Применение новых конструкционных материалов — основа качественного изменения самих конструкционных решений высокотехнологической продукции. Не исключено, что те или иные решения, представляющиеся неэффективными или даже технически невозможными и непредставимыми сегодня, получат существенный импульс к развитию и станут нормой технологий недалекого будущего.
Но не только фуллерены и структуры, основанные на них, являются перспективным направлением технологического развития по пути «традиционных» технологий. Другой перспективный путь — образование на поверхности материалов нанопленок с заданными свойствами. Достигается это путем как их нанесения, так и обработки поверхностей. Использование лазерного излучения, ионных пучков для нанесения таких поверхностей не должно скрывать от нас того обстоятельства, что это нанотехнологическое продолжение такого технологического процесса «со стажем», как оцинковка кровельного металла.
Но такое продолжение открывает совсем новые технологические возможности применения материалов, которых ранее не было. Так, речь идет о создании покрытий, обеспечивающих длительное и надежное функционирование материалов в критических условиях. При этом одновременно решаются задачи обеспечения надежности и соблюдения сроков эксплуатации, что объединяется термином «ресурс», принципиально важным в таких областях, как авиадвигателестроение, энергомашиностроение, двигатели и генераторные агрегаты в целом.
Нанопокрытия решают и вопросы повышения энергоэффективности, технически понимаемой как коэффициент полезного действия (КПД). Так, благодаря покрытию лопастей газовой турбины тепловой электростанции нанопленкой может быть существенно повышена рабочая температура, что в соответствии со «школьной» формулой тепловой машины [10] КПД зависит от разности температур нагревателя и холодильника тепловой машины. Нанопокрытия позволяют существенно увеличить температуру.
позволяет значительно поднять КПД электрогенерации.
С проблемами КПД, долговечности и надежности также тесно связаны вопросы, решаемые в рамках нанотехнологического вектора развития по снижению трения в различных агрегатах, в том числе двигателях. Снижение на порядок трения за счет нанопокрытия — ближайшая технологическая перспектива.
В этом контексте следует отметить и упоминавшиеся нанопорошки как основу смазочных материалов, применяемых с обычными агрегатами (без нанопокрытий), как способа продления их ресурса. Одновременно другие нанопорошки будут использоваться и как абразивные материалы, применяемые в таких традиционных сферах, как бурение нефтяных и газовых скважин. В целом, это направление также справедливо рассматривать как традиционное, начатое технологиями по созданию искусственных технологических алмазов и производством уже полностью искусственного, т. е. не существующего в природе, фианита. При этом твердость созданного инструмента (не только бурового, но и иного) может быть выше или соразмерна твердости алмаза, как, впрочем, могут повышаться и его прочностные свойства в целом за счет снижения хрупкости.
Традиционные области применения нанотехнологий требуют и ряда «простых» решений, таких как повышение надежности и качества соединений. Последнее решение стало особенно актуальным при строительстве подводных газопроводов, где качество сварных швов трудно периодически контролировать.
В этом же — решение проблемы сродства [11] Сродством к электрону называют энергию, выделяющуюся в процессе присоединения электрона к свободному атому. Если два металла имеют различное сродство, то при их контакте возникает электродвижущая сила — как в батарейке. Текущий ток разрушает материал.
различных материалов сборных конструкций, актуальной, в частности, в авиастроении. Так, отсутствие надлежащих материалов при проектировании в целом удачного воздушного судна ТУ-134/154 не позволило найти решения, исключающие процедуры технического обслуживания самолета, требующего периодическую частичную разборку фюзеляжа для проверки состояния стрингеров в местах соединений с корпусом.
В этом же ряду стоит задача обеспечения необходимой адгезии [12] Адгезия (от лат. adhaesio — «прилипание») — слипание поверхностей двух разнородных твердых или жидких тел.
поверхностей, имеющей место в процессах склеивания, пайки, сварки, нанесения покрытий, решение которой, в частности, позволит «склеивать» разнородные материалы, например керамическую пластину с металлической.
Читать дальше