Следующий, далеко не простой психологически, но не сложный технически шаг – манипуляции с яйцеклетками или эмбрионами, направленные не на устранение дефектов, а на улучшение тех или иных качеств. Мы коснемся только обсуждаемого здесь аспекта – повышения мыслительных возможностей людей. Скажем сразу, что такая возможность существует и даже уже осуществлена у экспериментальных животных. Так, создана линия трансгенных животных (мышей), у которых генно-инженерным способом повышено производство белка GAP-43 в клетках нервной системы (Aigner et al., 1995). Этот белок присутствует в мозге всех животных, включая человека. Он локализован, главным образом, в аксонных окончаниях нейронов. Известно, что GAP-43 участвует в регенерации нервных клеток, а также в процессах, связанных с обучением и памятью. Оказалось, что трансгенные животные, благодаря повышенному производству GAP-43, значительно умнее животных с нормальным производством этого белка. Их преимущества наиболее очевидны при выполнении особенно сложных заданий, которые могут быть вообще недоступны “нормальным” животным (Routtenberg et al., 2000; Holahan et al., 2007).
8.4.5. Прицельная трансформация групп клеток мозга
Были проведены также эксперименты по ненаследуемому повышению интеллектуальных возможностей отдельных субъектов. Для успешного выполнения белком GAP-43 и некоторыми другими белками свойственных им функций необходимо присутствие фермента протеинкиназы C (ПКС), осуществляющей выборочное фосфорили-рование белков. Так, в белке GAP-43 ПКС фосфорилирует только один аминокислотный остаток (серин-41). Активный ген ПКС в составе обезвреженного вирусного вектора вводили в контролирующие обучение и память (ассоциативные) участки коры или гиппокампа мозга крысы, где осуществлялась застройка гена ПКС в генетический аппарат ограниченного количества нейронов. Эта процедура существенно повышала способность животного к обучению (Neill, 2001; Zhang et al., 2005). Целесообразен аналогичный эксперимент с геном фермента кальпаин. Этот фермент осуществляет разрыв молекулы GAP-43 около того же серина-41, образуя функционально активные фрагменты (Захаров и др., 2005). Было бы интересно (возможно, опыты уже ведутся) по той же схеме прицельно внедрить дополнительный ген самого белка GAP-43 в нейроны ассоциативных областей мозга пока, естественно, экспериментальных животных. Особенно большой эффект улучшения памяти и повышения способности к обучению можно ожидать при одновременной трансформации соответствующих участков мозга также по другим генам, продукты которых участвуют в этих процессах.
Следует еще раз подчеркнуть, что эти манипуляции хоть и являются генно-инженерными, не имеют отношения к евгенике, т. к. трансформируются только соматические клетки, и повышенная сообразительность не передается по наследству. Возможно, именно такой путь повышения интеллектуальных возможностей профессионально заинтересованных в этом людей окажется доступен в относительно близком будущем.
8.4.6. Проблема создания каталога генных вариаций, имеющих отношение к повышению (понижению) интеллектуальных возможностей в области “точных” наук
Очевидно, что активностью генов белка GAP-43 и ряда других уже известных продуктов, экспрессируемых в мозге, контроль деятельности мозга не ограничивается. Интеллектуальные способности определяются многими функциями мозга, среди которых короткая и долговременная память, ассоциативные реакции, скорость реагирования и др. Эти функции зависят от экспрессии многих белков, в частности, тех, которые обеспечивают стабильность и реформирование (пластичность) синапсов, секрецию нейромедиаторов, аксонный транспорт и др. Многие из задействованных в этих процессах белков экспрессируются не только в мозге, но и в других тканях, где они контролируют совсем иные функции. Более того, познавательные способности могут зависеть от генов, напрямую к функциям мозга отношения, казалось бы, не имеющих (Reiss et al., 1995; Lenhoff et al., 1997; Payton et al., 2003; Rujescu et al., 2003; Konishi et al., 2004). Все это усложняет идентификацию генов, в наибольшей степени ответственных за интеллект.
Проблема установления мутаций (вариаций), влияющих на формирование интеллектуального потенциала, и генов, в которых они находятся, входит в круг задач, решаемых медицинской генетикой. Определенные шаги в этом направлении уже делаются (Иванов и Киселев, 2005; Dorus et al., 2004; Hill and Walsh, 2005).
Возможно, эффективным подходом был бы поиск связанных с повышенным интеллектом вариаций нуклеотидных последовательностей (мутаций) при тотальном сканировании геномов соответственно подобранных групп людей (Craig and Plomin, 2006). Если иметь в виду интересующее нас повышение интеллекта, проявляющееся в успешности в области “точных” наук, то в одну группу (контрольную) войдут люди, для которых по собственной оценке математика и физика были самыми трудно усваиваемыми предметами, а во вторую группу войдут победители олимпиад по этим предметам и уже проявившие себя талантливые студенты и ученые. Конечно, такой подбор не является столь однозначным, как, скажем, подбор по признакам отсутствия или наличия музыкального слуха, когда объективное тестирование можно осуществить с помощью камертона. Однако при достаточной представительности обеих групп и при условии полной расшифровки геномов всех испытуемых выявление вариаций, характерных именно для людей с повышенным “естественно-научным” интеллектом, представляется выполнимым. В данном случае термин “выявление вариаций” означает локализацию в геноме и определение характера каждой такой вариации как точечной замены, делеции или вставки.
Читать дальше
Конец ознакомительного отрывка
Купить книгу