Флоренция (гравюра XVI в.)
ДЖИРОЛАМО КАРДАНО
Семья Медичи — великих герцогов Тосканских — представляет для нас особый интерес, поскольку годы их правления совпадают с временем жизни Галилея, родившегося в Тоскане и проведшего там большую часть своей жизни. К чести Медичи надо сказать, что они не раз выступали в защиту Галилея — это относится и к сыну Фердинандо, Козимо II (1609–1621), и к его внуку, Фердинандо II (1621–1670). Годы правления Фердинандо II падают на вторую треть XVII в. К этому времени Флоренция уже давно находилась в состоянии упадка.
Но XVI век в Италии это еще эпоха Возрождения. Микеланджело, Тициан и Бенвенуто Челлини находятся в расцвете своего творчества, Торквато Тассо пишет свой «Освобожденный Иерусалим», в науке мы видим блестящие имена представителей итальянской натурфилософии: Кардано, Телезио, Патрици, Кампанеллы и Бруно. Как и гуманисты XIV–XV вв., натурфилософы XVI в. в значительной мере подготовили почву для принятия новой картины мира, в которой не было уже места ни аристотелевскому космосу, ни аристотелевской физике.
С философской точки зрения творчество Джироламо Кардано (1501–1576) было замечательно тем, что в нем содержалась критика схоластического понимания материи как чистой возможности. Кардано доказывает реальность существования материи, которая не может возникнуть из ничего и равным образом не может превратиться в ничто. Используя удачное выражение А. X. Горфункеля, можно сказать, что представления Кардано обозначили важный шаг по пути «реабилитации материи». Кардано был чрезвычайно разносторонним ученым: помимо философии, он занимался медициной и свою научную карьеру начинал именно как врач, затем обратился к математике (с 1534 г. он занимал кафедру математики в Болонье и Милане), известен он также и как писатель, его автобиография «О моей жизни» является интересным памятником общественной психологии XVI в. Будучи весьма одаренным и энергичным человеком, Кардано прожил бурную жизнь, полную приключений, при этом ему были свойственны многие странности, например, по преданию, он уморил себя голодом, чтобы оправдать собственное предсказание дня своей смерти.
Имя Кардано, так же как и имя другого замечательного итальянского математика, Никколо Тартальи (1506–1557), связано с задачей об уравнениях 3-й степени, решение которой дало толчок прогрессу в области алгебры. Тарталья вырос в бедности, и его настоящее имя нам неизвестно. «Тарталья» означает «заика», это прозвище он получил потому, что стал заикаться после того, как мальчиком пережил жестокую картину взятия французами своего родного города Брешии. Тарталья был самоучкой, но его замечательный талант дал ему возможность вступить в 1535 г. в математический диспут с неким Антонио Фиоре, которому Шипионе дель Ферро, профессор математики в Болонье, сообщил найденное им решение уравнения вида х 3+ ах = b . Диспут заключался в том, что каждая сторона предлагала противнику решить равное количество задач, однако Фиоре знал ход решения и потому обладал преимуществом. Тем не менее Тарталья решил все 30 задач своего противника, в то время как тот не смог решить ни одной его задачи.
НИККОЛО ТАРТАЛЬЯ
Победа на диспуте принесла Тарталье значительное материальное вознаграждение и славу замечательного математика. После диспута его имя стало известно Кардано, который еще раньше стал заниматься решением уравнений 3-й степени, но не достиг, по-видимому, существенных результатов. Кардано смог уговорить Тарталью сообщить ему правила решения уравнений, пообещав сохранить их в тайне. Вскоре, однако, он нарушил свое обещание, опубликовав в 1545 г. книгу «Великое искусство, или об алгебраических вещах», в которой подробно разбирались решения уравнений 3-й степени. Хотя в книге заслугам Тартальи воздавалось должное, тот воспринял ее публикацию как оскорбление, и между двумя учеными завязалась ожесточенная полемика, в процессе которой были обнародованы некоторые добавочные результаты в решении этой проблемы.
Как бы то ни было, результаты Тартальи дошли до нас через посредство книги Кардано, а книга, которую сам Тарталья, по его утверждениям, собирался опубликовать, так и не увидела. Суть этих результатов сводилась к тому, что для уравнения
Читать дальше