Однако есть тут и существенные отличия. "Бетон" заполняет лишь часть пустот между фибриллами. Остальное же пространство заполнено "живым веществом" клетки - протопластом. Его слизистая субстанция - протоплазма содержит в себе мелкие и сложно организованные включения, ответственные за важнейшие процессы жизнедеятельности. Скажем, хлоропласта отвечают за фотосинтез, митохондрии - за дыхание, а ядро - за деление и размножение. Причем обычно слой протоплазмы со всеми этими включениями прилегает к клеточной стенке, а внутри протопласта больший или меньший объем занимает вакуоль - капля водного раствора различных солей и органических веществ. Причем иногда в клетке может быть несколько вакуолей.
Различные части клетки разделены между собой тончайшими пленками мембранами. Толщина каждой мембраны всего лишь несколько молекул, однако нужно отметить, что молекулы эти довольно крупные, и потому толшина мембраны может достигать 75- 100 ангстрем. (Величина как будто действительно большая; впрочем, не будем забывать, что сам-то ангстрем составляет всего-навсего 10" см.)
Однако так или иначе в структуре мембраны можно выделить три молекулярных слоя: два наружных образуются молекулами белков и внутренний, состоящий из жироподобного вещества - липидов. Такая многослойность придает мембране избирательность; говоря совсем уж упрощенно, различные вещества просачиваются через мембрану с различной скоростью. И это дает возможность клетке выбирать из окружающей вреды наиболее нужные ей вещества, аккумулировать их внутри.
Да что там вещества! Как показали, например, эксперименты, проведенные в одной из лабораторий Московского физико-технического института под руководством профессора Э.М.Трухана, мембраны способны вести разделение даже электрических зарядов. Пропускают, скажем, на одну сторону электроны, в то время как протоны проникнуть сквозь мембрану не могут.
Насколько сложна и тонка работа, которую приходится вести ученым, можно судить по такому факту. Хоть мы и говорили, что мембрана состоит из довольно больших молекул, все равно толщина ее, как правило, нс превышает 10' см, одной миллионной доли сантиметра. И толще ее сделать нельзя иначе резко падает эффективность разделения зарядов.
И еще одна трудность. В обычном зеленом листе за перенос электрических зарядов отвечают также хлоропласты - фрагменты, содержащие в своем составе хлорофилл. А эти вещества нестойкие, быстро приходящие в негодность.
- Зеленые листья в природе живут от силы 3-4 месяца, - рассказывал мне один из сотрудников лаборатории кандидат физико-математических наук В.Б.Киреев. - Конечно, создавать на такой основе промышленную установку, которая бы вырабатывала электричество по патенту зеленого листа, бессмысленно. Поэтому нужно либо найти способы делать природные вещества более стойкими и долговечными, либо, что предпочтительнее, отыскать им синтетические заменители. Над этим мы сейчас как раз и работаем...
И вот недавно пришел первый успех: созданы искусственные аналоги природных мембран. Основой послужила окись цинка. То есть самые обыкновенные, всем известные белила...
Добытчики золота. Объясняя происхождение электрических потенциалов в растениях, нельзя остановиться лишь на констатации факта: "Растительное электричество" есть результат неравномерного (пусть даже и весьма неравномерного!) распределения ионов между различными частями клетки и средой. Тут же появляется вопрос: "А почему такая неравномерность возникает?"
Известно, например, что для возникновения разности потенциалов 0,15 вольт между клеткой водоросли и водой, в которой она живет, необходимо, чтобы концентрация калия в вакуоли была примерно в 1000 раз выше, чем в "забортной" воде. Но известен науке так же и процесс диффузии, то есть самопроизвольного стремления любого вещества равномерно распределиться по всему доступному объему. Почему же в растениях этого не происходит?
В поисках ответа на такой вопрос нам придется затронуть одну из центральных проблем в современной биофизике - проблему активного переноса ионов через биологические мембраны.
Начнем опять-таки с перечисления некоторых известных фактов. Почти всегда содержание тех или иных солей в самом растении выше, чем в почве или (в случае водоросли) в окружающей среде. Например, водоросль нителла способна накапливать калий в концентрациях в тысячи раз выше, чем в природе.
Причем многие растения накапливают не только калий. Оказалось, к примеру, что у водоросли кадофора фракта содержание цинка было в 6000, кадмия - в 16 000, цезия - в 35 000 и иттрия - почти в 120 000 раз выше, чем в природе.
Читать дальше