1 ...6 7 8 10 11 12 ...30 Формирование спор зависит от условий их роста. Споры могут оставаться живыми в условиях, когда вегетативные клетки, не образовавшие спор, погибают. Большинство спор хорошо переносят высушивание, многие из них остаются жизнеспособными даже при кипячении в течение нескольких часов. В сухом состоянии споры погибают лишь при сильном нагревании (150 – 160 °C) в течение нескольких часов.
Споры отдельных видов бактерий могут сохраняться веками.
Оболочка спор содержит мукопротеиды. Под слоями внешней оболочки лежит так называемая кора споры, которая служит барьером против проникновения воды и растворенных в ней веществ. Под корой расположена стенка споры, покрывающая цитоплазму, ядро и резервный материал. Цитоплазма споры имеет гомогенную структуру.
В спорах содержится мало воды (вследствие обезвоживания), что предохраняет белки от денатурации при высоких температурах. Общая схема спорообразования может быть представлена в следующем виде. В вегетативной клетке возникают уплотненные зоны цитоплазмы, носящие название первичной споры, или проспоры ,которые, сливаясь, преломляют свет. Проспора окружена цитоплазматической мембраной. Дальнейшее развитие споры состоит в образовании оболочек и ее созревании.
Диаметр споры равен приблизительно диаметру клетки, в которой она образовалась, или несколько превышает его. У некоторых бактерий спора формируется на конце клетки, которая при этом несколько расширяется и приобретает вид барабанной палочки. У других бактерий спора образуется в центре клетки, которая либо не меняет формы (род Bacillus ), либо в середине расширяется и принимает вид веретена (род Clostridium) . Вегетативная часть клетки разрушается и исчезает, и остается только преломляющая свет спора, с трудом подвергающаяся окрашиванию.
Попадая в благоприятные условия, спора начинает «прорастать». При этом она разбухает не только в результате поглощения воды, но и вследствие роста клетки за счет резервного материала. Затем оболочки под влиянием давления, вызванного ростом, разрываются и дают трещину. Возникает новая вегетативная клетка. Способ, которым клетка выходит из споры, индивидуален для каждого вида и может использоваться в качестве видовой характеристики.
Благодаря жесткости стенки клетка сохраняет форму: шаровидную, палочковидную или извитую. Оболочка защищает клетку, сохраняя ее структурную целостность при изменении внешних условий, в частности при осмотических воздействиях. Наряду с мембраной она служит полупроницаемым барьером, обеспечивающим избирательное проникновение питательных веществ из окружающей среды и выделение высокомолекулярных соединений – токсинов или ферментов, участвующих во внеклеточном переваривании субстратов. Клеточная стенка определяет антигенную специфичность видов, является местом адсорбции фагов на клетке и участвует в процессах движения и деления.
При изучении химического состава клеточных стенок грамположительных (бактерий с толстой клеточной стенкой) и грамотрицательных бактерий (с тонкой клеточной стенкой) выявились существенные различия в их качественном и количественном составе (рис. 7).
Рис. 7. Клеточная стенка грамотрицательных бактерий ( А ) и грамположительных ( Б ) (по: Поздеев О. К., 2001)
За механическую прочность стенки у этих групп микроорганизмов ответствен один и тот же гетерополимер — пептидогликан , вместе с тем его количественное содержание и локализация у разных бактерий не одинаковы. А такой компонент клеточной стенки, как тейхоевые кислоты , содержится в стенках только грамположительных бактерий. Электронномикроскопическое изучение срезов поверхностных слоев грамположительных и грамотрицательных бактерий также подтвердило неоднородность структуры их клеточных стенок.
Грамположительные (толстокожие) бактерии
Стенка грамположительных бактерий представляет собой однородную структуру толщиной приблизительно 20 – 80 нм. Главный ее компонент – пептидогликан – составляет 40 – 90 % от сухой массы стенки. Это универсальный гетерополимер. С ним ковалентно связаны полисахариды и тейхоевые кислоты. Он найден в клеточных стенках почти всех прокариотических клеток.
Жесткий слой пептидогликана окружает всю бактериальную клетку и является по существу одной крупной «мешковидной» молекулой. Молекула пептидогликана представляет собой параллельные полисахаридные цепи, связанные между собой короткими пептидными мостиками. Повторяющейся единицей полисахаридных цепей является муропептид. Таким образом, молекула пептидогликана – это замкнутая со всех сторон сеть, окружающая бактериальную клетку.
Читать дальше