Поиски лекарства от коронавирусной инфекции начались практически сразу, как стало понятно, что новая болезнь не просто очередная простуда, а весьма заразная и довольно смертельная напасть. И хотя сообщения, что тот или иной препарат помогает излечить COVID-19, с завидной регулярностью появлялись в прессе и многочисленных группах в WhatsApp, в действительности серьезных прорывов не было. Нет их и сейчас, в октябре 2020 года (хотя по сравнению с началом эпидемии имеется несколько обнадеживающих находок). Как получается, что в XXI веке с его торжеством медицины, невероятной еще 100 лет назад продолжительностью жизни, победой над многими видами рака и так далее и тому подобное мы не можем справиться с каким-то респираторным заболеванием? Чтобы ответить на этот вопрос, необходимо разобраться, как вообще ученые и медики ищут лекарства от разных болезней.
Как создаются новые лекарства
Но начать нужно с того, что нынешняя ситуация — нетипичная. Хотя новые серьезные болезни периодически появляются (вспомним, например, вирус Зика или всевозможные птичьи и свиные гриппы), это все же довольно редкое событие. Статус-кво в медицине — работа с давно известными патологиями. Для большинства из них (по крайней мере для большинства самых распространенных) у нас есть лекарства разной степени эффективности, и ученые заняты тем, что ищут способы сделать терапию еще более действенной. Иногда для этого достаточно как-то модифицировать уже существующее лекарство, но нередко новый подход оказывается принципиально иным (скажем, иммунотерапия рака в противовес традиционной химиотерапии). Но как бы то ни было, список болезней, лекарства от которых активно ищут и/или создают, ограничен. И когда вдруг появляется новое заболевание, ученые и врачи не бросаются синтезировать потенциальные лекарства, как думают многие, а первым делом изучают уже имеющиеся препараты. И подобная тактика по многим причинам оправданна.
Во-первых, это намного быстрее. Синтез новой молекулы с нуля занимает годы и требует работы множества исследовательских групп самого разного профиля: биоинформатиков и химиков, которые придумают и синтезируют ее, биологов, которые протестируют молекулы на культурах клеток и животных, медиков, которые еще раз проверят ее на животных, потом разработают протоколы лечения для людей и проведут предклинические и клинические испытания. Это не говоря уже о бесчисленном количестве бумаг, волоките по получению официальных разрешений, сертификации, масштабировании производства или вовсе создании производственных мощностей с нуля и так далее.
И главное, для того, чтобы запустить все эти процессы, необходимо понимать, хотя бы примерно, как именно патоген проникает в организм и вредит ему. Чтобы быть действенным, лекарство должно блокировать какие-то важные для метаболизма вируса процессы. Веществ, эффективных против вирусов вообще, не бывает, так как разные вирусы используют разные механизмы проникновения в клетку и размножения. И даже препараты, которые вроде бы усиливают базовые противовирусные механизмы, бывают эффективны в отношении одних вирусов и бесполезны в борьбе с другими, потому что какие-то паразиты могут, например, успешно обходить их. Стоит подумать об этом, когда соберетесь покупать в аптеке какое-нибудь разрекламированное лекарство «помогающее от всех типов вирусов» или имбирь по цене черной икры — в первые месяцы эпидемии ушлые торговцы сделали себе на нем небольшое состояние.
Эпидемия COVID-19 началась в конце 2019 года, и, хотя за несколько последующих месяцев человечество накопило невероятное количество информации о SARS-CoV-2, создать за столь короткий срок новое лекарство невозможно. Нет, разработки специализированных препаратов против коронавируса, безусловно, ведутся, но ждать в этом направлении скорого прорыва не приходится. Гораздо перспективнее второй путь — перебор и проверка уже созданных молекул или лекарств против других болезней. Их огромное количество, но, примерно понимая патогенез нового вируса, можно сократить список потенциально перспективных веществ до приемлемого минимума и сразу начать тестировать молекулы-кандидаты.
Искусственный интеллект
Проверять все имеющиеся молекулы вручную невозможно: к тому моменту, как ученые закончат это делать, любая эпидемия давным-давно завершится — с тем или иным результатом. Тестировать только несколько каким-то образом выбранных веществ тоже плохой вариант: слишком велик риск пропустить что-то важное. Поэтому для поиска возможных эффективных молекул сегодня подключают суперкомпьютеры. В них загружают базы данных имеющихся перспективных молекул, и машина просчитывает, могут ли они связываться с теми или иными белками вируса. Например, установленный в Майнцском университете имени Иоганна Гутенберга суперкомпьютер MOGON II за два месяца проверил 42 000 различных веществ и выдал перечень из нескольких препаратов, которые должны максимально эффективно вмешиваться в жизненный цикл коронавируса на разных его стадиях [230] V. Moorthy, A. M. Henao Restrepo, M.-P. Preziosi, and S. Swaminathan, «Data sharing for novel coronavirus (COVID-19)», Bull. World Health Organ. , vol. 98, no. 3, pp. 150–150, Mar. 2020.
. В число перспективных молекул вошли несколько лекарств от гепатита С, который тоже относится к одноцепочечным РНК-содержащим вирусам (причем геномы обоих записаны в «плюс»-цепи: это важно, так как многие препараты, эффективные в отношении «минус»-вирусов, бесполезны для борьбы с вирусами из «плюс»-группы, и наоборот). Теперь «мокрые исследователи» — то есть те, кто работает прежде всего в лаборатории, а не с компьютерными моделями, — могут тестировать не миллион каких-то молекул, а небольшое число кандидатов с максимальной вероятностью на успех.
Читать дальше
Конец ознакомительного отрывка
Купить книгу