Айзек Азимов - The Genetic Effects of Radiation
Здесь есть возможность читать онлайн «Айзек Азимов - The Genetic Effects of Radiation» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2018, Издательство: epubBooks Classics, Жанр: Медицина, Биология, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:The Genetic Effects of Radiation
- Автор:
- Издательство:epubBooks Classics
- Жанр:
- Год:2018
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 80
- 1
- 2
- 3
- 4
- 5
The Genetic Effects of Radiation: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Genetic Effects of Radiation»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
The Genetic Effects of Radiation — читать онлайн бесплатно полную книгу (весь текст) целиком
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Genetic Effects of Radiation», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
Percent lethal chromosomes vs. Amount of x radiation, r
If the straight line obtained by plotting mutation rate against radiation dose is followed down to a radiation dose of zero, it is found that the line strikes the vertical axis slightly above the origin. The mutation rate is more than zero even when the radiation dose is zero. The reason for this is that it is the dose of man–made radiation that is being considered. Even when man–made radiation is completely absent there still remains the natural background radiation.
It is possible in this manner to determine that background radiation accounts for considerably less than 1% of the spontaneous mutations that take place. The other mutations must arise out of chemical misadventures, out of the random heat–jiggling of molecules, and so on. These, it can be presumed, will remain constant when the radiation dose is increased.
This is a hopeful aspect of the situation for it means that, if the background radiation is doubled or tripled for mankind as a whole, only that small portion of the spontaneous mutation rate that is due to the background radiation will be doubled or tripled.
Let us suppose, for instance, that fully 1% of the spontaneous mutations occurring in mankind is due to background radiation. In that case, the tripling of the background radiation produced in the United States by man–made causes (see Table) would triple that 1%. In place of 99 non–radiational mutations plus 1 radiational, we would have 99 plus 3. The total number of mutations would increase from 100 to 102—an increase of 2%, not an increase of 200% that one would expect if all spontaneous mutations were caused by background radiation.
RADIATION EXPOSURES IN THE UNITED STATES [7] Estimated average exposures to the gonads, based on 1963 report of Federal Radiation Council.
Millirems [8] One thousandth of a rem.
Natural Sources A. External to the body 1. From cosmic radiation 50.0 2. From the earth 47.0 3. From building materials 3.0 B. Inside the body 1. Inhalation of air 5.0 2. Elements found naturally in human tissues 21.0 Total, Natural sources 126.0 Man–made Sources A. Medical Procedures 1. Diagnostic X rays 50.0 2. Radiotherapy X ray, radioisotopes 10.0 3. Internal diagnosis, therapy 1.0 Subtotal 61.0 B. Atomic energy industry, laboratories 0.2 C. Luminous watch dials, television tubes, 2.0 radioactive industrial wastes, etc. D. Radioactive fallout 4.0 Subtotal 6.2 Total, man–made sources 67.2 Overall total 193.2
Dosage Rates
Another difference between the genetic and somatic effects of radiation rests in the response to changes in the rate at which radiation is absorbed. It makes a considerable difference to the body whether a large dose of radiation is absorbed over the space of a few minutes or a few years.
When a large dose is absorbed over a short interval of time, so many of the growing tissues lose the capacity for cell division that death may follow. If the same dose is delivered over years, only a small bit of radiation is absorbed on any given day and only small proportions of growing cells lose the capacity for division at any one time. The unaffected cells will continually make up for this and will replace the affected ones. The body is, so to speak, continually repairing the radiation damage and no serious symptoms will develop.
Then, too, if a moderate dose is delivered, the body may show visible symptoms of radiation sickness but can recover. It will then be capable of withstanding another moderate dose, and so on.
The situation is quite different with respect to the genetic effects, at least as far as experiments with Drosophila and bacteria seem to show. Even the smallest doses will produce a few mutations in the chromosomes of those cells in the gonads that eventually develop into sex cells. The affected gonad cells will continue to produce sex cells with those mutations for the rest of the life of the organism. Every tiny bit of radiation adds to the number of mutated sex cells being constantly produced. There is no recovery, because the sex cells, after formation, do not work in cooperation, and affected cells are not replaced by those that are unaffected.
This means (judging by the experiments on lower creatures) that what counts, where genetic damage is in question, is not the rate at which radiation is absorbed but the total sum of radiation. Every exposure an organism experiences, however small, adds its bit of damage.
Accepting this hard view, it would seem important to make every effort to minimize radiation exposure for the population generally.
Since most of the man–made increase in background radiation is the result of the use of X rays in medical diagnosis and therapy, many geneticists are looking at this with suspicion and concern. No one suggests that their use be abandoned, for certainly such techniques are important in the saving of life and the mitigation of suffering. Still, X rays ought not to be used lightly, or routinely as a matter of course.
It might seem that X rays applied to the jaw or the chest would not affect the gonads, and this might be so if all the X rays could indeed be confined to the portion of the body at which they are aimed. Unfortunately, X rays do not uniformly travel a straight line in passing through matter. They are scattered to a certain extent; if a stream of X rays passes through the body anywhere, or even through objects near the body, some X rays will be scattered through the gonads.
It is for this reason that some geneticists suggest that the history of exposure to X rays be kept carefully for each person. A decision on a new exposure would then be determined not only by the current situation but by the individual’s past history.
Such considerations were also an important part of the driving force behind the movement to end atmospheric testing of nuclear bombs. While the total addition to the background radiation resulting from such tests is small, the prospect of continued accumulation is unpleasant.
What’s more, whereas X rays used in diagnosis and therapy have a humane purpose and chiefly affect the patient who hopes to be helped in the process, nuclear fallout affects all of humanity without distinction and seems, to many people, to have as its end only the promise of a totally destructive nuclear war.
It is not to be expected that the large majority of humanity that makes up the populations outside the United States, Great Britain, France, China, and the Soviet Union can be expected to accept stoically the risk of even limited quantities of genetic damage, out of any feeling of loyalty to nations not their own. Even within the populations of the three major nuclear powers there are strong feelings that the possible benefits of nuclear testing do not balance the certain dangers.
Public opinion throughout the world is a key factor, then, in enforcing the Nuclear Test Ban Treaty, signed by the governments of the United States, Great Britain, and the Soviet Union on October 10, 1963.
Effects on Mammals
Although genetic findings on such comparatively simple creatures as fruit flies and bacteria seem to apply generally to all forms of life, it seems unsafe to rely on these findings completely in anything as important as possible genetic damage to man through radiation. During the 1950s and 1960s, therefore, there have been important studies on mice, particularly by W. L. Russell at Oak Ridge National Laboratory, Oak Ridge, Tennessee.
While not as short–lived or as fecund as fruit flies, mice can nevertheless produce enough young over a reasonable period of time to yield statistically useful results. Experimenters have worked with hundreds of thousands of offspring born of mice that have been irradiated with gamma rays and X rays in different amounts and at different intensities, as well as with additional hundreds of thousands born to mice that were not irradiated.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «The Genetic Effects of Radiation»
Представляем Вашему вниманию похожие книги на «The Genetic Effects of Radiation» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «The Genetic Effects of Radiation» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.