Айзек Азимов - The Genetic Effects of Radiation

Здесь есть возможность читать онлайн «Айзек Азимов - The Genetic Effects of Radiation» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2018, Издательство: epubBooks Classics, Жанр: Медицина, Биология, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Genetic Effects of Radiation: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Genetic Effects of Radiation»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The Genetic Effects of Radiation — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Genetic Effects of Radiation», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

By now, then, the set of genes with which we are normally equipped is the end product of long ages of such natural selection . A random change cannot be expected to improve it any more than random changes would improve any very complex, intricate, and delicate structure.

Evolution of the horse skull hindfoot and forefoot shown Note the changes - фото 11

Evolution of the horse (skull, hindfoot, and forefoot shown). Note the changes over a 60–million–year period from the Eocene era to the present. – Pleistocene and Recent, Pliocene, Miocene, Oligocene, Eocene

Yet over the eons, creatures have indeed changed, largely through the effects of mutation. If mutations are almost always for the worse, how can one explain that evolution seems to progress toward the better and that out of a primitive form as simple as an amoeba, for instance, there eventually emerged man?

In the first place, environment is not fixed. Climate changes, conditions change, the food supply may change, the nature of living enemies may change. A gene pattern that is very useful under one set of conditions may be less useful under another.

Suppose, for instance, that man had lived in tropical areas for thousands of years and had developed a heavily pigmented skin as a protection against sunburn. Any child who, through a mutation, found himself incapable of forming much pigment, would be at a severe disadvantage in the outdoor activities engaged in by his tribe. He would not do well and such a mutated gene would never establish itself for long.

If a number of these men migrated to northern Europe, however, children with dark skin would absorb insufficient sunlight during the long winter when the sun was low in the sky, and visible for brief periods only. Dark–skinned children would, under such conditions, tend to suffer from rickets.

Mutant children with pale skin would absorb more of what weak sunlight there was and would suffer less. There would be little danger of sunburn so there would be no penalty counteracting this new advantage of pale skins. It would be the dark–skinned people who would tend to die out. In the end, you would have dark skins in Africa and pale skins in Scandinavia, and both would be “fit”.

In the same way, any child born into a primitive hunting society who found himself with a mutated gene that brought about nearsightedness would be at a distinct disadvantage. In a modern technological society, however, nearsighted individuals, doing more poorly at outdoor games, are often driven into quieter activities that involve reading, thinking, and studying. This may lead to a career as a scientist, scholar, or professional man, categories that are valuable in such a society and are encouraged. Nearsightedness would therefore spread more generally through civilized societies than through primitive ones.

Then, too, a gene may be advantageous when it occurs in low numbers and disadvantageous when it occurs in high numbers. Suppose there were a gene among humans that so affected the personality as to make it difficult for a human being to endure crowded conditions. Such individuals would make good explorers, farmers, and herdsmen, but poor city dwellers. Even in our modern urbanized society, such a gene in moderate concentration would be good, since we still need our outdoorsmen. In high concentration, it would be bad, for then the existence of areas of high population density (on which our society now seems to depend) might become impossible.

In any species, then, each gene exists in a number of varieties upon which an absolute “good” or “bad” cannot be unequivocally stamped. These varieties make up the gene pool , and it is this gene pool that makes evolution possible.

A species with an invariable set of genes could not change to suit altered conditions. Even a slight shift in the nature of the environment might suffice to wipe it out.

The possession of a gene pool lends flexibility, however. As conditions change, one combination of varieties might gain over another and this, in turn, might produce changes in body characteristics that would then further alter the relative “goodness” or “badness” of certain gene patterns.

Thus, over the past million years, for example, the human brain has, through mutations and appropriate shifts in emphasis within the gene pool, increased notably in size.

Genetic Load

Some gene mutations produce characteristics so undesirable that it is difficult to imagine any reasonable change in environmental conditions that would make them beneficial. There are mutations that lead to the nondevelopment of hands and feet, to the production of blood that will not clot, to serious malformations of essential organs, and so on. Such mutations are unqualifiedly bad.

The badness may be so severe that a fertilized ovum may be incapable of development; or, if it develops, the fetus miscarries or the child is stillborn; or, if the child is born alive, it dies before it matures so that it can never have children of its own. Any mutation that brings about death before the gene producing it can be passed on to another generation is a lethal mutation .

A gene governing a lethal characteristic may be dominant. It will then kill even though the corresponding gene on the other chromosome of the pair is normal. Under such conditions, the lethal gene is removed in the same generation in which it is formed.

The lethal gene may, on the other hand, be recessive. Its effect is then not evident if the gene it is paired with is normal. The normal gene carries on for both.

When this is the case, the lethal gene will remain in existence and will, every once in a while, make itself evident. If two people, each serving as a carrier for such a gene, have children, a sperm cell carrying a lethal may fertilize an egg cell carrying the same type of lethal, with sad results.

Every species, including man, includes individuals who carry undesirable genes. These undesirable genes may be passed along for generations, even if dominant, before natural selection culls them out. The more seriously undesirable they are, the more quickly they are removed, but even outright lethal genes will be included among the chromosomes from generation to generation provided they are recessive. These deleterious genes make up the genetic load .

The only way to avoid a genetic load is to have no mutations and therefore no gene pool. The gene pool is necessary for the flexibility that will allow a species to survive and evolve over the eons and the genetic load is the price that must be paid for that. Generally, the capacity for a species to reproduce itself is sufficiently high to make up, quite easily, the numbers lost through the combination of deleterious genes.

The size of a genetic load depends on two factors: The rate at which a deleterious gene is produced through mutation, and the rate at which it is removed by natural selection. When the rate of removal equals the rate of production, a condition of genetic equilibrium is reached and the level of occurrence of that gene then remains stable over the generations.

Even though deleterious genes are removed relatively rapidly, if dominant, and lethal genes are removed in the same generation in which they are formed, a new crop of deleterious genes will appear by mutation with every succeeding generation. The equilibrium level for such dominant deleterious genes is relatively low, however.

Deleterious genes that are recessive are removed much more slowly. Those persons with two such genes, who alone show the bad effects, are like the visible portion of an iceberg and represent only a small part of the whole. The heterozygotes, or carriers, who possess a single gene of this sort, and who live out normal lives, keep that gene in being. If people in a particular population marry randomly and if one out of a million is born homozygous for a certain deleterious recessive gene (and dies of it), one out of five hundred is heterozygous for that same gene, shows no ill effects, and is capable of passing it on.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Genetic Effects of Radiation»

Представляем Вашему вниманию похожие книги на «The Genetic Effects of Radiation» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Genetic Effects of Radiation»

Обсуждение, отзывы о книге «The Genetic Effects of Radiation» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x