В повседневную практику в настоящее время входит понятие «наноматериалы». Наноматериалы представляют собой разновидность продукции наноиндустрии в виде материалов, содержащих структурные элементы с нанометровыми размерами, наличие которых обеспечивает существенное улучшение или появление качественно новых механических, химических, физических, биологических и других свойств, связанных с проявлением наномасштабных факторов.
Использование нанотехнологий в биологических системах прежде всего предполагает создание новых биосовместимых наноразмерных материалов и комплексное исследование их биологических свойств. Существенное значение при этом имеют природа наночастиц, а также реализованные механизмы их стабилизации. Использование природных полимеров в качестве наностабилизирующих матриц привело к созданию раздела наноразмерного материаловедения – нанобиокомпозитам (Помогайло А. Д., 2000).
Серьезные достижения последних лет в области молекулярной биологии и патофизиологии позволили более глубоко раскрыть ранее неизвестные механизмы патогенеза воспалительного и, в частности, раневого процесса. Показано, что причиной нарушения регуляции заживления ран, его осложненного течения, перехода ран в разряд долго не заживающих является вторичная альтерация, в основе которой лежит нарушение баланса систем продукции активных форм кислорода и эндогенной антиоксидантной защиты (Толстых М. П., 2002; Shukla A., 1997). В то же время, несмотря на достаточно большое количество известных химических соединений, обладающих антиоксидантными свойствами, арсенал эффективных препаратов для местного лечения ран с такой активностью существенно ограничен (Парамонов Б. А., 2000).
Известно, в частности, использование с этой целью дибунола (Берченко Г. Н., 1997; Шальнев А. Н., 1996), диэтона (Машковский М. Д., 2008), мексидола (Жинко Ю. Н., 1999), á-токоферола (витамин Е), витамина А, желчных кислот, липоевой кислоты (Парамонов Б. А., 2000). Большие перспективы связывают с разработкой антиоксидантов на основе СОД (Зиновьев Е. В., 2003; Клебанов Г. И., 2005). В то же время липофильность некоторых антиоксидантов является их значительным недостатком, так как делает невозможным их применение в первой фазе раневого процесса (Даценко Б. М., 1985; Назаренко Г. И., 2002). В связи с этим предпринимаются попытки создания водорастворимых форм липофильных антиоксидантов, например á-токоферола (Galeano M., 2001).
Использование в лечебных целях антиоксидантов стабилизирует собственную многокомпонентную систему антиоксидантной защиты и тормозит развитие свободнорадикального перекисного окисления липидов, клеточных и капиллярных мембран, предотвращая повреждение клеток и тканей, ограничивая распространение воспалительных изменений и вторичного некроза тканей (Тюнин М. А., 2009). При этом значительно усиливается фагоцитарная активность макрофагов и повышается неспецифический иммунитет (Берченко Г. Н., 1997; Толстых М. П., 2002). Применение антиоксидантов при лечении огнестрельных ран через 1 ч после ранения уменьшает количество иссекаемых тканей при первичной хирургической обработке в 1,3 – 1,85 раза (Шальнев А. Н., 1996).
Расширение ассортимента антиоксидантов, в первую очередь на основе наноматериалов, и их дальнейшее применение при лечении воспалительного процесса, по нашему мнению, должно способствовать предотвращению развития осложнений и скорейшему заживлению ран.
В связи с этим особый интерес представляют отмеченные ранее фуллерены (Kotelnikova R. A., 1998). До открытия фуллеренов считали, что углерод образует три аллотропные формы: алмаз, графит и карбин. Фуллерены принципиально отличаются от них тем, что представляют собой новую форму углерода не только по структуре (алмаз, графит, карбин – бесконечные системы, а фуллерены – семейство индивидуальных полиэдрических молекул), но и по существу, так как его молекула содержит фрагменты с пятикратной симметрией (пентагоны), которая не характерна для неорганических соединений (рис. 3). О высоком потенциале использования фуллеренов в медицине и биологии ученые заговорили практически с момента их открытия. В настоящее время установлено, что фуллерены, обладая антиоксидантной (Wang I. C., 1999), нейропротективной (Dugan L. L., 1997; 2001), мембранотропной (Андреев И. М., 2002; Kotelnikova R. A., 1998), противовирусной (Меджидова М. Г., 2004; Lin Y. L., 2000), антибластомной (Yang X. L., 2002), антимикробной (Tsao N., 2002) и фотодинамической активностью (Kasermann F., 1998; Vileno B., 2004), являются перспективным материалом для создания новых высокотехнологичных медицинских материалов и лекарственных препаратов фуллерена С 60(Пиотровский Л. Б., 2006). Фуллерены были обнаружены в том числе и в шунгитовых породах (Рожков С. П., 2007; Рожкова Н. Н., 2007), углерод из которых нашел применение в различных отраслях медицины (Панов П. Б., 2007; Шаповалов С. Г., 2005).
Читать дальше
Конец ознакомительного отрывка
Купить книгу