Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс

Здесь есть возможность читать онлайн «Андрей Павлов - Геометрия - Планиметрия в тезисах и решениях. 9 класс» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика4, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия: Планиметрия в тезисах и решениях. 9 класс: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия: Планиметрия в тезисах и решениях. 9 класс»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.
Материалы пособия соответствуют учебной программе школьного курса геометрии.
Для учителей и учащихся 9-х классов.

Геометрия: Планиметрия в тезисах и решениях. 9 класс — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия: Планиметрия в тезисах и решениях. 9 класс», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Задача 137

Рис 293 Решение I рис 293 Обозначим точки пересечения окружности лучами р - фото 626

Рис. 293.

Решение I (рис. 293). Обозначим точки пересечения окружности лучами р и q соответственно через С, А и Е, В. Проведём CD||ЕВ. Получим угол ?ACD = х. Угол ?ACD является вписанным в окружность и по определению равен половине дуги AD. По условию задачи дуга СЕ = ?, а дуга АВ равна ?. Тогда дуга AD = ? – ?. В таком случае х = 1/2 (? – ?).

Рис 294 Решение II рис 294 Обозначим точки пересечения окружности прямыми - фото 627

Рис. 294.

Решение II (рис. 294). Обозначим точки пересечения окружности прямыми р и q соответственно через А, Е и D, С. Проведём EF||CD. Угол AEF будет равен х (как внутренние накрест лежащие углы при параллельных CD, FE и секушей АЕ). ?AEF является вписанным в окружность и равен половине дуги AF. Из условия задачи и построений следует, что дуга AF = ? + ?.

Следовательно,

Задача 138 рис 295 Рис 295 Решение Так как BD диаметр окружности то - фото 628

Задача 138 (рис. 295)

Рис 295 Решение Так как BD диаметр окружности то BAD BCD 2 - фото 629

Рис. 295.

Решение. Так как BD – диаметр окружности, то ?BAD = ?BCD = ?/2. Обозначим ?ABD через х, тогда из прямоугольного треугольника ABD получаем, что cos х = AB/BD. По условию BD = 2, АВ = 1, значит, cos х = 1/2, и так как х – внутренний угол прямоугольного треугольника ABD, то х = ?/3. Тогда ?DBC = 3/4 (?ABD) = 3/4 ? ?/3 = ?/4. Вписанные углы ACD и ABD опираются на одну и ту же дугу AED, значит, ?ACD = ?ABD = ?/3. Из треугольника ADC по теореме синусов получаем, что

Ответ Задача 141 Решение OB 4 ВС 3 значит ОС 7 OB ОС ОА2 4 - фото 630 Ответ Задача 141 Решение OB 4 ВС 3 значит ОС 7 OB ОС ОА2 4 - фото 631

Ответ:

Задача 141 Решение OB 4 ВС 3 значит ОС 7 OB ОС ОА2 4 7 OA2 - фото 632

Задача 141

Решение. OB = 4; ВС = 3, значит ОС = 7. OB ? ОС = ОА2; 4 ? 7 = OA2; OA = 2?7.

Ответ: 2?7.

Задача 146 (рис. 296)

Рис 296 Решение Достроим ABD до параллелограмма Тогда АС АВ ВС но АС - фото 633

Рис. 296.

Решение. Достроим ?ABD до параллелограмма. Тогда АС < АВ + ВС, но АС = 2AM, 2AM < АВ + ВС = АВ + AD, что и требовалось доказать. Заметим, что AM является медианой ?ABD.

Задача 147 (рис. 297)

Рис 297 Решение Достаточно построить симметричные точки относительно берегов - фото 634

Рис. 297.

Решение. Достаточно построить симметричные точки относительно берегов и длина полученной ломаной равна длине прямолинейного отрезка А'В', т. е. минимальна.

Задача 148 (рис. 298)

Рис 298 Решение Так как средняя линия трапеции ABCD равна 4 то сумма - фото 635

Рис. 298.

Решение. Так как средняя линия трапеции ABCD равна 4, то сумма оснований равна 8. Воспользуемся тем, что середины оснований и точка пересечения боковых сторон трапеции лежат на одной прямой КМ. Из ?AKD ?AKD = 90°. Заметим, что ?AKD – прямоугольный, причем AD – гипотенуза и точкой М делится пополам. Но тогда AM = MD = КМ = 4 – х (радиусы описанной около ?AKD окружности), КЕ = 3 – х, где х – это длина отрезков BE и ЕС. Из подобия ?АКМ и ?ВКЕ следует: (4 – х)/x = (4 – х)/(3 – x); x = 3/2; BC = 3, AD = 5.

Ответ: 5 и 3.

Задача 154 (рис. 299)

Рис 299 Решение Пусть D проекция точки F на прямую d Середину О отрезка - фото 636

Рис. 299.

Решение. Пусть D – проекция точки F на прямую d. Середину О отрезка DF примем за начало прямоугольной системы координат, а прямую OF – за ось ординат. Точке F отнесём координаты (0; 1). Прямая d будет иметь уравнение у = -1. Пусть М(х; y) – произвольная точка плоскости. Тогда

и MN у 1 где MN расстояние от точки М до прямой d Если Возведя обе - фото 637

и MN = |у + 1 |, где MN – расстояние от точки М до прямой d. Если

Возведя обе части в квадрат получим уравнение у 14x2 Обратно если - фото 638

Возведя обе части в квадрат, получим уравнение у = 1/4x2.

Обратно, если координаты точки М удовлетворяют этому уравнению, то х2= 4у и, следовательно,

Заметим что если вместо DF 2 положить DF р то получим уравнение х2 2ру - фото 639

Заметим, что если вместо DF = 2 положить DF = р, то получим уравнение х2= 2ру.

Из школьного курса алгебры известно, что линия, определяемая уравнением у = ах2, называется параболой.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Представляем Вашему вниманию похожие книги на «Геометрия: Планиметрия в тезисах и решениях. 9 класс» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс»

Обсуждение, отзывы о книге «Геометрия: Планиметрия в тезисах и решениях. 9 класс» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x