Ханна Фрай - Математика любви. Закономерности, доказательства и поиск идеального решения

Здесь есть возможность читать онлайн «Ханна Фрай - Математика любви. Закономерности, доказательства и поиск идеального решения» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2015, ISBN: 2015, Издательство: Array Литагент «Corpus», Жанр: Математика, foreign_edu, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика любви. Закономерности, доказательства и поиск идеального решения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика любви. Закономерности, доказательства и поиск идеального решения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Казалось бы, что общего у любви и математики? Автор книги, профессор математики Лондонского университета Ханна Фрай, убедительно доказывает: математические формулы вполне способны рассказать нам что-то новое о любви и отношениях. Пусть наши чувства хаотичны и с трудом поддаются анализу, но ведь математика давно научилась работать с хаосом – идет ли речь о поведении элементарных частиц или демографических проблемах. Как бы причудливы и изменчивы ни были законы любви, математика в состоянии не только описать их, но и предложить ряд практических идей – от теории флирта и оптимального алгоритма поведения на вечеринке до прогнозирования числа гостей на свадьбе и даже их рассадки за столом. Математика – это язык мироздания. Так почему бы не поговорить на этом языке о любви?
В формате pdf A4 сохранен издательский дизайн.

Математика любви. Закономерности, доказательства и поиск идеального решения — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика любви. Закономерности, доказательства и поиск идеального решения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Представьте себе, что на начальном этапе “окна свиданий” вы начинаете встречаться с каким-то безумно обаятельным, убийственно красивым и необыкновенно приятным во всех отношениях партнером – короче говоря, он настоящий идеал! Но, не перебрав пока еще свои 37 %, вы не можете быть уверены, что это и есть лучший претендент из вашего списка. Если вы решите строго следовать алгоритму, то, согласно правилам фазы отторжения, с этим человеком следует расстаться. К несчастью, когда этот этап завершится и вы начнете более серьезно подходить к поиску спутника жизни, выяснится, что никого из них и сравнить нельзя с той вашей давней любовью. Если буквально следовать алгоритму, то вам придется всю жизнь отвергать всех кандидатов, пока вы не состаритесь в одиночестве. А умирая, вы, вероятно, будете проклинать ненавистные математические формулы.

Теперь представьте себе прямо противоположную ситуацию: вам ужасно не везло, и все, с кем вы встречались в течение первой трети “окна свиданий”, были невыносимыми занудами. К счастью, вы пребывали в фазе отторжения, и поэтому не связали свою жизнь ни с одним из них. А теперь представьте, что вы только что перебрали свои 37 % – и первый же встретившийся вам после этого человек оказался… тоже занудой (хотя и чуть менее занудным, чем предыдущие кандидаты)! Если вы, опять-таки, будете следовать правилам, то, боюсь, обречете себя на довольно скучный брак.

Тем не менее, с учетом всех рисков, а также оговоренных нами допущений и упрощений, это лучшая из возможных стратегий. Я считаю, что она остается актуальной и подтверждается реальным поведением многих людей в реальной жизни. Мы и в самом деле часто решаем сначала пройти через ряд романов и только потом, примерно после двадцати пяти, всерьез задумываемся о поиске спутника жизни. В Европе женщины выходят замуж в среднем в возрасте двадцати семи с половиной лет, что вполне укладывается в теорию. Я допускаю, что мужчины более вольно устанавливают для себя верхний предел возраста, когда пора остепениться, поэтому в Европе они вступают в брак в среднем в тридцать лет.

Помимо выбора партнера, аналогичная стратегия применима также в целом ряде других ситуаций, когда люди что-то ищут и хотят знать, когда наступит оптимальный момент для того, чтобы прекратить поиск. У вас есть три месяца, чтобы найти новую квартиру? Отвергайте все предложения, поступившие в течение первого месяца, а потом соглашайтесь на первый же вариант, который понравится вам больше, чем любой из уже отвергнутых. Хотите нанять ассистента? Откажите первым 37 % соискателей, а потом возьмите на работу первого, кто окажется лучше, чем любой из предыдущих. Собственно говоря, поиск сотрудника и является самым известным приложением этого метода, и поэтому его часто так и называют – “проблема секретаря”.

Несмотря на разнообразие областей применения метода и отчасти вопреки моим собственным словам, я, возможно, все-таки слегка перегибаю палку, советуя отвергнуть первые 37 % соискателей. Дело в том, что у этой стратегии есть один недостаток, о котором я еще не упоминала. До сих пор мы (и наши расчеты) исходили из того, что вы обязательно хотите найти лучшего из списка возможных партнеров. Но ситуация слегка изменится, если вы немного трансформируете свои критерии. В реальной жизни многие из нас предпочли бы провести жизнь с “просто хорошим” партнером, чем остаться у разбитого корыта, так и не встретив свой “номер один”. Может быть, не стоит упрямо следовать принципу “все или ничего”, а попытаться найти счастье с человеком, который входит хотя бы в верхние 5 % (или даже 15 %) вашего списка?

И в этом случае математика может кое-что вам предложить. Давайте попробуем определить наилучшую стратегию для каждого из этих сценариев, воспользовавшись так называемым “методом Монте-Карло”. Идея заключается в том, чтобы создать своего рода математической “день сурка” внутри компьютерной программы, что позволяет перебрать десятки тысяч различных сценариев вашей судьбы, играя со случайным образом выбранными партнерами и степенями совместимости. Программа, действуя как виртуальный симулятор поиска партнера, моделирует ситуации, которые могут возникнуть, если ваша “фаза отторжения” отличается от описанной выше (то есть включает не 37 %, а иное число). В конце каждого цикла программа “оглядывается назад”, снова оценивает всех ваших потенциальных партнеров и определяет, была ли выбранная стратегия успешной.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика любви. Закономерности, доказательства и поиск идеального решения»

Представляем Вашему вниманию похожие книги на «Математика любви. Закономерности, доказательства и поиск идеального решения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математика любви. Закономерности, доказательства и поиск идеального решения»

Обсуждение, отзывы о книге «Математика любви. Закономерности, доказательства и поиск идеального решения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x