Разделим интервал [0,1] на четыре равных интервала и построим на каждом из них по два прямоугольника — высота одного из них будет равна значению функции на левом конце интервала, высота другого — значению функции на правом конце интервала. Так как f (0) = 0 3= 0, высота первого прямоугольника будет равна 0:
Искомая площадь S заключена между суммой площадей меньших прямоугольников S 1 (выделены светло-серым) и больших прямоугольников S s (выделены темно-серым). Точнее говоря, искомая площадь будет больше первого значения и меньше второго. Вычислим обе эти площади с учетом того, что основания всех прямоугольников одинаковы и равны 1/4, отличаются лишь их высоты:
Среднее значение этих площадей равно: S ~ = ( S 1 + S s )/2 = 0,265625. Найдем более точное значение площади, разбив исходный интервал на большее число частей:
Теперь основания всех прямоугольников равны 1/8. И вновь сумма площадей прямоугольников, выделенных темно-серым ( S s ), будет больше искомой площади, которая превышает сумму площадей прямоугольников, выделенных светло-серым ( S 1 ).
Их среднее значение равно:
S ~= 0.5·( S s + S 1 ) = 0,2539…
Если мы продолжим этот процесс и будем последовательно делить интервал [0,1] на все более мелкие части, то в пределе мы разделим его на бесконечное число частей, получим бесконечное число прямоугольников, а сумма их площадей будет равна площади фигуры, заключенной между графиком кривой и осями координат.
Вопрос в том, как вычислить общую площадь бесконечного числа прямоугольников. Произведенные выше расчеты показывают, что искомое значение должно быть близко к 0,25, так как промежуточные результаты равны 0,2656… и 0,2539…
Чтобы получить окончательный ответ, рассмотрим, как мы вычислили два предыдущих значения. Вне зависимости от числа прямоугольников, будь их восемь, сто, тысяча или n , сумма их площадей будет рассчитываться одинаково. Значение площади S s при разделении интервала [0, 1] на n равных частей будет равно:
Следовательно, задача сводится к тому, чтобы найти значение этого выражения, когда n стремится к бесконечности. Посмотрим, чему равен его числитель, представляющий собой сумму кубов натуральных чисел:
1 3= 1
1 3+ 2 3= 9
1 3+ 2 3+ 3 3= 36
1 3+ 2 3+ 3 3+ 4 3= 100
Числитель будет равен 1, 9, 36, 100, … — это квадраты чисел 1, 3, 6, 10, … Может показаться, что суммы кубов натуральных чисел равны квадратам некоторых других чисел. Но каких? Какой ряд образуют числа 1, 3, 6, 10, …? Заметим, что
1 = 1
1 + 2 = 3
1 + 2 + 3 = 6
1 + 2 + 3 + 4 = 10.
Можно сформулировать теорему:
Сумма кубов первых n натуральных чисел равна квадрату их суммы.
Правильность этой теоремы можно подтвердить экспериментально для множества чисел — компьютер справится с этим за несколько мгновений. Однако экспериментальное подтверждение частных результатов и выведение из них какого-то общего принципа (именно так действуют физики и биологи) для математиков неприемлемо. В математике истинность увиденного нужно подтвердить для всех возможных случаев.
Как подтвердить истинность нашей теоремы для всех возможных случаев? Начнем с того, что вычислим сумму первых n натуральных чисел. Для этого применим метод, который использовал великий немецкий математик Карл Фридрих Гаусс, когда ему не было и десяти лет. Его биографы отмечают, что как-то раз преподаватель, чтобы занять учеников, дал им задание вычислить сумму натуральных чисел от 1 до 100.
Среди учеников был и Гаусс, который, к удивлению учителя, через несколько секунд протянул ему грифельную доску с правильным ответом. Юный Гаусс записал числа в два ряда, один над другим, и вычислил суммы в каждом столбце:
Сумма чисел в нижнем ряду равна 100·101 = 10100, что в два раза больше требуемой суммы. Следовательно, правильный ответ равен
Читать дальше