Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума

Здесь есть возможность читать онлайн «Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.

Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1 0,037563856636663…

2 0,919688568847383…

3 0,155382300008691…

4 0,000000033433002…

5 0,999995885994382…

6 0,101001000100001…

7 0,774647746477464…

Мы можем записать вещественное число вида 0, … не представленное в этом списке. Составить его можно так: если первый знак первого числа в списке равен 1, мы запишем 0, в противном случае — 1. Согласно этому правилу и с учетом вышеприведенных чисел наше новое число будет начинаться с 0,1…

Применим это же правило ко второму знаку второго числа в списке. Если он равен 1, мы запишем 0, в противном случае — 1. В записи нашего числа уже два знака: 0,10…

Повторим эти же рассуждения для следующих знаков числа. Для вышеприведенного списка наше число будет записываться так:

Ψ = 0,1011101…

Это число будет отличаться от всех присутствующих в списке как минимум одним знаком. Следовательно, этого числа в списке нет. По сути, найти его нам поможет сам список. Следовательно, составить исчерпывающий список невозможно, и вещественные числа в интервале от 0 до 1 сосчитать нельзя.

Доказательство Кантора показывает, что бесконечное множество вещественных чисел имеет иную природу, чем бесконечное множество натуральных, и это приводит к нескольким парадоксам. Например, несмотря на то что длина вещественной прямой и длина окружности произвольного радиуса отличаются, они содержат одинаковое число точек. Это может показаться бессмысленным, однако составим простую схему: если мы проведем из центра окружности все возможные лучи, которые пересекут окружность, то установим взаимно однозначное соответствие между точками полуокружности ( X, Y, Z , …) и точками вещественной прямой ( X', Y', Z' , …).

Степени с не очень натуральным показателем Все мы рассматриваем новые идеи - фото 27
Степени с не очень «натуральным» показателем

Все мы рассматриваем новые идеи через призму своего культурного опыта, и чтобы усвоить что-то новое, требуется взглянуть на уже известное под другим углом. Обучаясь, человек может обнаружить, что его рассуждения и рассуждения, приводимые в учебнике, вступают в конфликт друг с другом. Так происходит при изучении степеней, показатели которых являются отрицательными числами, десятичными дробями или иррациональными числами — их сложно понять в рамках классического подхода, где рассматриваются, например, операции умножения или деления.

Возвести число в степень означает умножить его на само себя столько раз, сколько указывает показатель степени:

3 4= 3·3·3·3

При перемножении степеней их показатели складываются, при делении — вычитаются:

2 3·2 5 = (2·2·2)·(2·2·2·2·2) = 2 8.

Однако если мы разделим друг на друга степени с одинаковым показателем - фото 28

Однако если мы разделим друг на друга степени с одинаковым показателем, например, 2 3на 2 3, то получим удивительный результат. С одной стороны, он будет равен 1, так как 8/8 = 1. Но в соответствии с правилом показатели степеней должны вычитаться:

Мир математики т20 Творчество в математике По каким правилам ведутся игры разума - изображение 29

Это означает, что приведенный выше результат возможен только в том случае, если 2 0= 1. Но почему число, умноженное само на себя ноль раз, равно 1? И это не все. Если при делении степеней показатель в знаменателе больше, чем в числителе, то мы получим степень с отрицательным показателем:

Изначально возведение числа в степень означало умножение этого числа на само - фото 30

Изначально возведение числа в степень означало умножение этого числа на само себя несколько раз. Затем в математике появились операции и выражения, противоречащие этой точке зрения. Возвести число в отрицательную степень означает разделить единицу на число, умноженное само на себя столько раз, сколько указывает показатель степени. Логично ли это? Имеет ли это смысл? Да, это логично, но смысл этой операции нужно изменить. Нужно изменить понятие показателя степени как числа, означающего число сомножителей в произведении. Кроме того, степень с отрицательным показателем — то же самое, что степень с положительным показателем в знаменателе дроби. Таким образом:

Подобным же образом описываются степени с дробными показателями Если - фото 31

Подобным же образом описываются степени с дробными показателями. Если квадратный корень числа возвести в квадрат, то результатом будет исходное число:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума»

Представляем Вашему вниманию похожие книги на «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума»

Обсуждение, отзывы о книге «Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x