Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы

Здесь есть возможность читать онлайн «Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том. 22. Сон разума. Математическая логика и ее парадоксы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том. 22. Сон разума. Математическая логика и ее парадоксы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.
Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Том. 22. Сон разума. Математическая логика и ее парадоксы — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том. 22. Сон разума. Математическая логика и ее парадоксы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Посмотрим, как Тьюринг справился с проблемой разрешения. Сначала он предположил, что мечту Гильберта можно воплотить в реальность, то есть существует механический метод, позволяющий за конечное время определить, является данное высказывание истинным или ложным. В частности, этот алгоритм позволяет оценить истинность высказывания «Машина Тьюринга Т останавливается, когда на ее вход подается значение n ». Как мы уже указывали, благодаря методу «гёделизации» мы можем сопоставить каждой машине Тьюринга число так, что в нем будет закодирована вся структура машины. Если n — число, описывающее некую машину Тьюринга, мы будем обозначать эту машину как Т( n ). В этой нотации проблема, которую мы хотим решить, может быть записана так: остановится ли машина Тьюринга Т( n ), если на ее вход подать число m ? Следует подчеркнуть, что если идеальная машина, которую представлял себе Гильберт, существует, то она сможет дать ответ на этот вопрос не в каких-то конкретных случаях, а для любых значений m и n .

Следовательно, речь идет о функции двух переменных, которая для данной пары чисел ( m, n ) определяет, остановится ли машина Тьюринга, описываемая числом n , когда ей на вход будет подана лента, на которой будет записано число m. Вернемся к примеру с числом π и обозначим за f число машины Тьюринга, которая просматривает десятичные знаки π в поиске требуемой последовательности. При вводе параметров (9, f ) наша функция вернет значение 1, если среди знаков π обнаружится последовательность из девяти девяток подряд (так как в этом случае машина остановится), в противном случае — 0 (в этом случае машина будет продолжать работу бесконечно).

Если мы предположим, что существует машина Тьюринга Р , решающая эту проблему, мы получим противоречие. Чтобы убедиться в этом, повторим еще раз принцип действия Р : это машина Тьюринга, на вход которой подаются пары чисел ( m, n ) и выходным значением которой может быть одно из двух значений: 1, если машина Тьюринга Т( n ) при заданном исходном значении m в определенный момент остановится, и 0 — в противном случае. Иными словами, либо не существует машины Тьюринга, обозначаемой числом n (так как не все натуральные числа обозначают какую-либо машину Тьюринга), или же она существует, но программа выполняется бесконечно долго при введенном параметре m . Такая программа, представляющая собой настоящий кошмар для специалистов по информатике, называется бесконечным циклом. Здесь важно, что если бы в нашем распоряжении находилась такая машина Т , мы с легкостью смогли бы создать другую машину Тьюринга (обозначим ее через С ), входным значением которой было бы одно число m и которая действовала бы следующим образом:

— если машина Тьюринга Т( n ) останавливается, когда ее входное значение равно n (иными словами, если Р( n, n ) равно 1), то С не остановится никогда;

— если машина Тьюринга Т( n ) бесконечно долго продолжает работу, если ее входное значение равно n (иными словами, если Р( n, n ) равно 0), то С остановится, едва начав работу.

В главе 2 вы увидели, как возникает парадокс лжеца, лишивший покоя мудреца Эпименида: это происходит, когда критянин говорит, что все критяне — лжецы, или когда высказывание описывает само себя так: «это высказывание ложно». Далее мы показали, как Гёдель использовал самоотносимость для формулировки истинного, но недоказуемого высказывания, гласящего: «это высказывание недоказуемо». Теперь читатель наверняка догадается, как следует закончить рассуждения: мы определили машину Тьюринга С , которая останавливается или безостановочно продолжает работу в зависимости от того, как работает другая машина, Т( n ). Но что произойдет, если на вход С подать саму машину С , то есть соответствующее ей число с ?

Если машина Т( с ) остановится, то С не остановится. Если, напротив, Т( с ) войдет в бесконечный цикл, то С остановится. Но С и Т( с ) — это одна и та же машина! Она не может одновременно вести себя по-разному! Предположив, что проблема остановки имеет решение для любых шип, мы пришли к противоречию: демон самоотносимости нашептывает нам «выбери с », но одна и та же машина будет одновременно вести себя по-разному.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том. 22. Сон разума. Математическая логика и ее парадоксы»

Представляем Вашему вниманию похожие книги на «Том. 22. Сон разума. Математическая логика и ее парадоксы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том. 22. Сон разума. Математическая логика и ее парадоксы»

Обсуждение, отзывы о книге «Том. 22. Сон разума. Математическая логика и ее парадоксы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x