Можно сделать вывод, что если известна средняя скорость, область в фазовом пространстве, в которой может двигаться система, снова ограничена. В этом случае скорость любой из частиц не может быть больше четырех; кроме того, скорость одной из частиц определяет скорость другой. Это можно представить следующим образом (скорость первой частицы представлена горизонтально, скорость второй — вертикально).
Как можно заметить, возможные точки ограничены прямой линией. Если мы совместим этот результат с полученным ранее, то увидим, что все возможные точки ограничены некоторой областью фазового пространства, которое в этом случае имеет четыре измерения, по два для каждой частицы.
Описанная ситуация справедлива для любого числа частиц. Объем, температура и давление определяют, в какой области фазового пространства находится газ. Любая из точек этой области порождает значения для характеристик газа — давления, объема и температуры. Итак, при изучении газа мы можем предположить, что наша система начинается в одной из этих точек, но не можем выяснить, в какой именно.
Что произойдет, если мы позволим системе меняться? Останутся ли температура, объем и давление теми же? И если нет, то как они будут меняться? На эти вопросы можно ответить не всегда. Порой попытка найти ответ заставляет обратиться к физике неравновесных систем, о которой мы расскажем в следующей главе.
Понятие совокупности
Поскольку мы не способны определить даже начальное положение нашего газа в фазовом пространстве, нам нужна стратегия, которая позволила бы нам описать его изменение на основании трех величин, которые мы можем измерить: давления, объема и температуры. Для этого мы можем задать вопрос, что происходит со всеми системами, которые находятся в ограниченной области фазового пространства с указанными характеристиками. Кажется нелогичным считать, что описать изменение тысяч миллионов систем легче, чем сделать это для одной. Но здесь в игру вступают теория вероятностей и статистика.
Возьмем груз, привязанный к пружине, как показано на рисунке.
Если мы знаем общую энергию частицы и область в пространстве, в которой она находится, можно выяснить, какие точки в фазовом пространстве совместимы с этими условиями. В нашем случае они распределяются таким образом.
Точки фазового пространства для объекта, привязанного к пружине.
Результат вполне логичен, поскольку траектория частицы в фазовом пространстве — это именно эллипс, как мы видели в главе 2. Если мы позволим нашей системе меняться, она пройдет через все возможные точки в фазовом пространстве, совместимые с этой средней скоростью и энергией.
В целом множество точек в пространстве, совместимых с некоторой температурой, давлением и объемом, будет иметь подобный вид, хоть и в пространстве с большим количеством измерений.
Возможные точки в фазовом пространстве. Любая из них может представлять газ.
Наша система могла бы быть представлена любой из этих точек. Возможно, что при изменении состояния газ пройдет через них, и мы этого не осознаем, поскольку способны измерить только макроскопические величины. Таким образом, имеет смысл изучать поведение каждой системы в рамках интересующей нас области.
Множество систем, совместимых с макроскопическими переменными, которые мы измерили, называется совокупностью. Следующие параграфы посвящены изучению изменения нашей совокупности, которая является не чем иным, как всеми системами, которые могли бы порождаться измеряемыми величинами.
Газ в состоянии равновесия
Мы увидели, что невозможно узнать положение и импульс каждой молекулы газа. Однако можно узнать распределение импульсов и скоростей. То есть мы можем знать, какая доля частиц находится в данном месте и движется с определенной скоростью.
Найти распределение импульсов и положений — довольно сложная задача. Однако ее можно облегчить, если мы сосредоточимся на равновесных системах. Равновесие, если речь идет о газах, немного отличается от равновесия в обычно понимаемом виде. Мы говорим, что частица пришла в равновесие, когда она перестает двигаться или движется с постоянной скоростью, и это означает, что на нее не воздействует какая-либо сила. В случае с газами их частицы продолжают двигаться под воздействием силы, которую на них оказывают стенки сосуда. Однако мы можем говорить о состоянии равновесия: если мы позволим нашей системе развиваться в течение бесконечного времени, наступит момент, когда макроскопические изменения больше не будут наблюдаться. Тогда мы скажем, что наступило равновесие. Газ придет в равновесие, когда прекратится обмен энергией и материей с внешним миром.
Читать дальше