Альберт Виолант-и-Хольц - Том 9. Загадка Ферма. Трехвековой вызов математике

Здесь есть возможность читать онлайн «Альберт Виолант-и-Хольц - Том 9. Загадка Ферма. Трехвековой вызов математике» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 9. Загадка Ферма. Трехвековой вызов математике: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 9. Загадка Ферма. Трехвековой вызов математике»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

На первый взгляд теорема Ферма кажется очень простой. Те, кто сталкиваются с ней впервые, обычно недоумевают: почему на протяжении 380 с лишним лет математики не могли ее доказать? Однако вскоре подобные иллюзии рассеиваются, и становится понятно: теорема Ферма — одна из сложнейших математических задач всех времен. Данная книга повествует не только о Пьере Ферма и его теореме, но также о британце Эндрю Уайлсе — гениальном математике, который бросил вызов грандиозной задаче и вышел из этой схватки победителем.

Том 9. Загадка Ферма. Трехвековой вызов математике — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 9. Загадка Ферма. Трехвековой вызов математике», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Подсчет бесконечностей

В течение следующих семи лет Уайлс как одержимый работал над доказательством. Первые два года он посвятил исключительно обзору задачи и рассмотрению всех возможных подходов, стремясь найти метод, который мог бы сработать. По этому поводу англичанин Джон Идензор Литлвуд как-то сказал, что математик должен чувствовать задачу, «словно язык у себя во рту». Основным местом развития событий стал чердак в доме Уайлса в окрестностях Принстона. Уайлс отключил телефон и, не слишком хорошо знакомый с компьютерами, покрывал тысячи и тысячи страниц всевозможными формулами, рисунками, схемами и графиками. Работа продвигалась очень медленно: иногда он пробовал применить уже известный метод, чтобы перейти от одного шага доказательства к другому, в других случаях он слегка изменял известные методы, наконец, в некоторых случаях просто требовалось изобретать нечто совершенно новое. Поначалу Уайлс держал тему своей работы в строжайшем секрете.

Сперва он оценил возможность «подсчитать» все эллиптические функции (напомним, что их бесконечно много), с одной стороны, и модулярные эллиптические функции (которых также бесконечно много) — с другой, и показать, что вычисления в обоих случаях эквивалентны. Этот способ оказался неэффективным, но по ходу работы Уайлс получил важный результат, который помог упростить задачу: вместо доказательства гипотезы Таниямы — Симуры для всех эллиптических кривых нужно было доказать эту гипотезу только для их подмножества, так называемых полустабильных кривых.

На этом этапе Уайлс в поисках вдохновения обратился к теории Галуа, названной в честь ее создателя — безвременно ушедшего из жизни французского математика Эвариста Галуа (1811–1832) . Галуа, подлинно трагическая фигура в истории математики, высказал гениальную догадку о перестановках возможных решений (корней) многочлена, которая позднее была развита Огюстеном Луи Коши и Артуром Кэли. Например, многочлен второй степени

х 2— 4 х + 1 = 0

имеет корни х 1 = 2 + √3 и х 2 = 2 — √3.

Оба корня удовлетворяют следующим уравнениям:

x 1 + x 2 = 4

x 1x 2 = 1

Оба уравнения будут по-прежнему верны, если мы поменяем местами х 1 и х 2

x 2 + x 1 = 4

x 2x 1 = 1

Галуа подробно изучил функции, инвариантные по отношению к перестановке корней, и определил так называемую группу Галуа для уравнений. Например, группа Галуа для многочлена х 2— 4 х + 1 = 0 состоит из двух перестановок: неизменной (в результате которой корни остаются «на своих местах») и транспозиции (показанной в примере).

Эндрю Уайлсв 2000 году фотография С Моззочи Принстон НьюДжерси - фото 81

Эндрю Уайлсв 2000 году.

(фотография: С. Моззочи, Принстон, Нью-Джерси)

Свойства групп Галуа — очень мощный инструмент, который позволяет охарактеризовать чрезвычайно сложные структуры. Уайлс использовал их, чтобы преодолеть первое препятствие на пути к доказательству. В частности, он определил эллиптические уравнения в терминах представлений Галуа и доказал, что их можно ассоциировать с некоторыми характерными элементами модулярных форм. Таким образом, Уайлс переформулировал задачу о подсчете, использовав более «податливые» понятия. Этот первый, но очень важный шаг сам по себе уже заслуживал признания со стороны математического сообщества. Но это был всего лишь первый шаг, а Уайлс потратил на него два года непрерывного труда.

Уайлс работал в полном одиночестве, откуда же он брал силы, чтобы не отступаться от задачи? По его словам, «когда ты полностью сосредоточен, лучший способ расслабиться — это поговорить с детьми. Им не интересна теорема Ферма, по крайней мере, в столь нежном возрасте. Они хотят слушать только сказки». Остается лишь добавить, что Уайлсу повезло: его дети не проявили такого интереса к теореме Ферма, как он сам, когда был ребенком.

* * *

ПОРОЧНЫЙ ГЕНИЙ

Эварист Галуа был молодым человеком с горячим сердцем, который не раздумывая встал на сторону республиканцев в смутные времена Луи-Филиппа I, последнего короля Франции. Он также был одним из величайших гениев за всю историю математики. Его пылкий и непокорный характер, тяготы и лишения, свойственные научной работе, и проваленные вступительные экзамены в Политехническую школу привели к тому, что его труды были почти не известны современникам. Отдушину от неудач в науке Галуа нашел в политическом радикализме. Из-за своих политических взглядов он получил вызов на дуэль от офицера артиллерии, который симпатизировал монархистам.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 9. Загадка Ферма. Трехвековой вызов математике»

Представляем Вашему вниманию похожие книги на «Том 9. Загадка Ферма. Трехвековой вызов математике» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 9. Загадка Ферма. Трехвековой вызов математике»

Обсуждение, отзывы о книге «Том 9. Загадка Ферма. Трехвековой вызов математике» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x