Так как в общем случае число «игроков» (инвесторов, работников, банков) является конечным, так же как и число игр, стратегий и возможных вариантов, то при анализе задач теории игр часто применяется теория графов.
* * *
Теория графов в школе
Интенсивное развитие теории графов на протяжении всего XX века и ее применение во множестве самых разных задач пробудили интерес к преподаванию этой дисциплины в высшей школе.
Курс «Теория графов и ее применение» сегодня изучается как часть курса математики, исследования операций, дискретной математики, входит в программу различных инженерных специальностей (строительство, электроэнергетика, телекоммуникации) и, разумеется, в курс информатики.
Однако до сих пор не решен вопрос о преподавании теории графов в старшей школе. Речь не идет о том, чтобы изучать теорию графов в том же объеме, что и арифметику или геометрию, однако различные эксперименты в сфере образования показывают, что элементы теории графов имеют высокую образовательную ценность и должны быть включены в школьную программу.
Среди преимуществ теории графов применительно к образованию выделим следующие.
1. Графы часто представляют собой прекрасные примеры математических моделей. Несмотря на простоту графов, с их помощью можно описывать и изучать интересные реальные ситуации.
2. Графы — прекрасный пример использования математики в повседневной жизни. Они помогают увидеть, что математика постоянно присутствует в окружающем нас мире.
3. Изучение графов стимулирует индуктивное, комбинаторное и пространственное мышление, что имеет высокую образовательную ценность.
4. Графы помогают решать занимательные и прикладные задачи. Благодаря работам Дьёрдя Пойа мы знаем, что решение задач — один из двигателей обучения математике.
С учетом вышесказанного будет уместно привести цитату из «Алисы в стране чудес» Льюиса Кэрролла, где Алиса разговаривает с Котом:
«— Скажите, пожалуйста, куда мне отсюда идти?
— А куда ты хочешь попасть? — ответил Кот.
— Мне все равно… — сказала Алиса.
— Тогда все равно, куда и идти, — заметил Кот».
Путь, которым должно следовать образование, подразумевает качественное обучение для всех. Образование должно гарантировать актуальность теоретических и практических знаний. Нельзя, чтобы школьная программа ограничивалась рассмотрением задач столетней давности, чтобы в ней не рассматривались важные современные задачи.
Графы и нейронные сети
Развитие информатики привело к тому, что многие математические модели стали использоваться в автоматических процессах (выполняемых машинами), которые, безусловно, способствуют прогрессу. Учитывая невероятную сложность человеческого мозга, модели искусственного интеллекта должны содержать нетривиальные способы обработки данных. Машина легко справляется с вычислениями, но порекомендовать один из нескольких возможных вариантов — задача намного более сложная.
На начальном этапе развития искусственного интеллекта особое внимание привлекали так называемые экспертные системы — программы, которые на основе знаний людей-экспертов могли давать рекомендации, помогающие принимать решения. Экспертные системы имели особый успех в медицине: они помогали ставить диагноз с учетом определенных параметров на основе множества реальных историй болезни. Появились и другие алгоритмы, например генетические, в которых используются механизмы, напоминающие биологическую эволюцию. В генетических алгоритмах случайные ситуации обрабатываются статистическими методами и влияют на алгоритм решения конкретной задачи. Эти алгоритмы применяются в эволюционном и генетическом программировании. Графы в них используются как способ визуализации процессов. В свою очередь, эти алгоритмы, которые можно встретить в различных системах, сетях, в задачах прогнозирования и других, также связаны с теорией графов, теорией игр и логикой.
Моделирование нейронов человеческого мозга и принципа их действия легло в основу новой теории, известной как теория искусственных нейронных сетей, или просто теория нейронных сетей.
Нейронная сеть состоит из единичных элементов, называемых нейронами, которые получают входные сигналы и выдают результат — выходной сигнал. Между нейронами существуют различные взаимосвязи, сами нейроны могут объединяться в слои. В нейронах могут использоваться функции распределения или веса, присваиваемые входным значениям (функции распределения могут изменяться и применяться только к определенным множествам значений). В классическом программировании конкретный алгоритм по очереди выполняет определенные действия и вычисляет результат на основе входных значений. Нейронная же сеть может «обучаться» автоматически на основе больших объемов данных, а затем обрабатывать новые входные данные на основе изученных. Заметим, что в этой теории не только проводится аналогия с нейронами человеческого мозга, но также используются те же понятия, что и при обучении людей: «обучение», «гибкость», «терпимость», «самоорганизация».
Читать дальше