Рауль Ибаньес - Том 26. Мечта об идеальной карте. Картография и математика

Здесь есть возможность читать онлайн «Рауль Ибаньес - Том 26. Мечта об идеальной карте. Картография и математика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, Издательство: ООО «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 26. Мечта об идеальной карте. Картография и математика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 26. Мечта об идеальной карте. Картография и математика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Современный человек пользуется картами практически ежедневно: карты украшают стены школ, они помогают нам ориентироваться на местности, находить кратчайший путь из одного пункта в другой, изучать историю, географию, экономику и ряд других наук.
Карты — важный рабочий инструмент для некоторых специалистов: моряков, летчиков, машинистов, топографов и проч. Но много ли мы знаем о том, как создаются карты? Для чего существует такое количество разнообразных карт и насколько все они точны?
Прочитав эту книгу, вы узнаете множество новых и любопытных фактов о геометрии карт.

Том 26. Мечта об идеальной карте. Картография и математика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 26. Мечта об идеальной карте. Картография и математика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Индикатриса Тиссо или эллипс искажения один из способов графического - фото 59

Индикатриса Тиссо, или эллипс искажения — один из способов графического изображения искажений на карте. В разных участках земной поверхности строятся небольшие окружности, после чего по их проекциям на карте можно увидеть проективные искажения в различных участках карты. Так, если мы примем радиус окружности равным λ, она преобразуется в эллипс, длины полуосей которого будут равны λи μ. Если λ = μ, то эллипсы примут форму окружностей, а отображение будет конформным. При λ= 1/ μотображение будет равновеликим. На иллюстрации представлена индикатриса Тиссо для равновеликой цилиндрической проекции Ламберта.

Наконец, очевидно, что эта проекция не сохраняет геодезические линии, за исключением меридианов и экватора. Вывод таков: равновеликие проекции могут не быть изометрическими, и одного лишь сохранения площадей для создания точной карты Земли недостаточно.

Цилиндрические и псевдоцилиндрические проекции

Равновеликая цилиндрическая проекция Ламберта — это геометрическая цилиндрическая проекция, определяемая как геометрическая проекция земной сферы на касающийся ее цилиндр (как правило, точки касания лежат на экваторе) с последующим развертыванием цилиндра на плоскости (для этого цилиндр разрезается вдоль одного из меридианов, то есть вертикально). В картах, созданных с использованием этой проекции, искажения возникают на первом этапе построения, так как развертывание цилиндра на плоскость является изометрическим преобразованием и не искажает размеры. Если изменить диаметр основания цилиндра, то есть уменьшить его так, чтобы он рассекал сферу, или же сменить его положение либо проекцию лучей, то мы получим различные геометрические цилиндрические проекции.

Другими проекциями этого же типа являются центральная цилиндрическая проекция и стереографическая проекция Брауна. В центральной цилиндрической проекции «лучи света» распространяются из центра сферы на ее поверхность и на поверхность цилиндра. Искажения у полюсов, вносимые этой проекцией, очень велики и даже больше, чем искажения в проекции Меркатора. В стереографической проекции Брауна, разработанной в 1867 году, центром проекции для произвольной точки меридиана служит противолежащая точка экватора на этом же меридиане.

Эта проекция, как и в свое время стереографическая проекция Галла, была создана в попытках устранить излишние искажения у полюсов, возникающие при использовании проекции Меркатора.

Сечения для некоторых геометрических цилиндрических проекций показывающие - фото 60

Сечения для некоторых геометрических цилиндрических проекций, показывающие разницу размеров и внешнего вида карт, созданных с использованием этих проекций.

Мы считаем, что цилиндр касается сферы на экваторе, но также можем рассмотреть случаи, когда цилиндр рассекает сферу вдоль двух параллелей, симметричных относительно экватора. Так, если цилиндр рассекает сферу вдоль параллелей 30° с. ш. и ю. ш., то равновеликая цилиндрическая проекция Ламберта станет эквивалентна проекции Бермана (1910) или проекции Галла — Петерса (1833 и 1967), если цилиндр рассекает сферу вдоль параллелей 45° с. ш. и ю. ш. Если в стереографической проекции Брауна цилиндр рассекает сферу вдоль 45-х параллелей, имеем стереографическую проекцию Галла (1885).

Карта выполненная в равновеликой цилиндрической проекции Бермана при которой - фото 61

Карта, выполненная в равновеликой цилиндрической проекции Бермана, при которой цилиндр рассекает сферу вдоль 30-х параллелей.

Понятие цилиндрической проекции охватывает не только геометрические, но и алгоритмические проекции, которые обладают некоторыми общими свойствами с описанным выше геометрическими проекциями.

1. Линии координатной сетки, то есть меридианы и параллели, являются прямыми и перпендикулярны друг другу.

2. Масштаб вдоль каждой параллели постоянен (для разных параллелей он отличается), следовательно, меридианы равноудалены друг от друга. Длины всех меридианов и всех параллелей одинаковы.

Карты мира, созданные с помощью этих проекций, прямоугольные, а их метрические свойства симметричны относительно экватора. В качестве примеров можно привести цилиндрическую равнопромежуточную проекцию, цилиндрическую проекцию Миллера и проекцию Меркатора. В простой цилиндрической равнопромежуточной проекции, которую ввел Эратосфен, масштаб карты неизменен вдоль каждого меридиана, следовательно, параллели равноудалены друг от друга. Частным случаем является plate саrréе — проекция, в которой меридианы и параллели образуют

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 26. Мечта об идеальной карте. Картография и математика»

Представляем Вашему вниманию похожие книги на «Том 26. Мечта об идеальной карте. Картография и математика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 26. Мечта об идеальной карте. Картография и математика»

Обсуждение, отзывы о книге «Том 26. Мечта об идеальной карте. Картография и математика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x