Антонио Дуран - Том 27. Поэзия чисел. Прекрасное и математика

Здесь есть возможность читать онлайн «Антонио Дуран - Том 27. Поэзия чисел. Прекрасное и математика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 27. Поэзия чисел. Прекрасное и математика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 27. Поэзия чисел. Прекрасное и математика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Поэзия — недоказуемая истина. Математика же, напротив, состоит из доказательств. И все-таки у этих двух сфер есть что-то общее. Ученый Анри Пуанкаре писал: «Думать, что математика затрагивает лишь интеллект, означало бы забыть о красоте математики, элегантности геометрии, которые прекрасны в самом полном смысле этого слова». Математик находится посередине между наукой и искусством, и это подтверждает неизбежную связь между самой абстрактной из наук и человеческими эмоциями. Цель этой книги — на нескольких ярких примерах показать красоту математики.

Том 27. Поэзия чисел. Прекрасное и математика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 27. Поэзия чисел. Прекрасное и математика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Кантор и анархистская природа математики

Почти одновременно с тем, как Гаусс написал эти строки, родился Георг Кантор(1845–1918) . Именно он смог подчинить себе бесконечность, укротив это страшное математическое чудовище.

Кантор начал с того, что сравнил различные бесконечные множества с числами, которые имелись в его распоряжении. Для сравнения бесконечных множеств он объединял элементы этих множеств в пары: если элементы двух множеств можно объединить попарно так, что ни один элемент не останется без пары, значит, число элементов этих множеств одинаково.

Кантору удалось объединить в пары натуральные и целые числа, натуральные и дробные числа. Вопреки доводам логики, согласно которым целое больше его части, рассуждения Кантора показывали, что натуральных чисел столько же, сколько и дробных.

Однако для выполнения расчетов с бесконечностью Кантору потребовались бесконечные множества разного размера. Первый важный результат был получен в конце 1873 года, когда Кантор обнаружил два бесконечных множества, элементы которых нельзя было объединить попарно. Точнее, ученый доказал, что натуральные числа нельзя объединить в пары с точками произвольного отрезка. Этот результат стал одним из самых революционных в истории математики. Для этого утверждения, сколь важного, столь и глубокого, Кантор в 1899 году нашел в высшей степени простое и элегантное доказательство. Этим доказательством, подобно картинам импрессионистов, можно полнее насладиться, зная его историю и необходимый контекст.

Канторв 1894 году в возрасте 49 лет когда он пытался систематизировать теорию - фото 105

Канторв 1894 году, в возрасте 49 лет, когда он пытался систематизировать теорию множеств.

Доказательство Кантора

Для простоты вместо точек отрезка рассмотрим все бесконечные последовательности вида 0, а 1, a 2, а 3 , …, где каждая цифра 0, а 1, a 2, а 3 , … имеет значение 0 или 1. Нетрудно видеть, что число различных последовательностей такого типа равно числу точек отрезка (однако доказательство этого утверждения будет носить несколько технический характер).

В доказательстве Кантора используется так называемый диагональный метод, который для любой пары, состоящей из одного из чисел 1, 2, 3, 4… и двоичной последовательности, позволяет найти такую двоичную последовательность, которая не будет парой ни для одного числа. Представьте, что дана произвольная пара, образованная числом и двоичной последовательностью. Для простоты рассмотрим следующие несколько пар.

Обратите внимание на цифры обведенные квадратной рамкой первую цифру первой - фото 106

Обратите внимание на цифры, обведенные квадратной рамкой: первую цифру первой последовательности, вторую цифру второй последовательности и так далее. Построим новую последовательность (она приведена в конце списка и отделена многоточием), изменив эти цифры: заменим единицы нулями, а нули — единицами. Таким образом, первой цифрой новой последовательности будет 0, второй — 0, третьей — 1, четвертой — 0 и так далее. Так мы гарантируем, что вне зависимости от последующих цифр новая последовательность будет отличаться от всех предыдущих: она будет отличаться от первой последовательности первым знаком, от второй — вторым, от третьей — третьим и так далее. Это должно убедить читателя, что в представленном выше списке для созданной нами двоичной последовательности не найдется пары. Если немного подумать, то станет понятно, что метод Кантора не зависит от представленного выше списка. Если список изменить, мы сможем применить этот метод к новому списку и сформировать новую последовательность, для которой не найдется пары.

* * *

ДИАГОНАЛЬНЫЙ МЕТОД КАНТОРА

Этот же диагональный метод наряду с понятием подмножества позволил Кантору показать, как можно построить бесконечные множества сколь угодно большого размера. Представьте множество А = {1,2,3}, образованное тремя числами 1, 2, 3. Множество подмножеств Аполучается, если рассмотреть все множества, которые мы можем составить из элементов А, в том числе пустое множество 0. Обозначив множество подмножеств Ачерез Р( А), имеем:

Кантор доказал что если множество Абесконечное то бесконечность - фото 107

Кантор доказал, что если множество Абесконечное, то бесконечность, соответствующая множеству подмножеств А, будет всегда больше, чем бесконечность, соответствующая исходному множеству. В своем доказательстве Кантор вновь применил диагональный метод, адаптировав его к этой задаче. Рассмотрим пары, образованные элементами множества Аи множества его подмножеств Р( А). Каждый элемент хмножества Абудет иметь пару — множество X, составленное из элементов А. Теперь определим подмножество А, которое не будет иметь пары: это множество Y, содержащее те элементы х множества А, которые не принадлежат соответствующему множеству X.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 27. Поэзия чисел. Прекрасное и математика»

Представляем Вашему вниманию похожие книги на «Том 27. Поэзия чисел. Прекрасное и математика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 27. Поэзия чисел. Прекрасное и математика»

Обсуждение, отзывы о книге «Том 27. Поэзия чисел. Прекрасное и математика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x