Антонио Дуран - Том 27. Поэзия чисел. Прекрасное и математика

Здесь есть возможность читать онлайн «Антонио Дуран - Том 27. Поэзия чисел. Прекрасное и математика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 27. Поэзия чисел. Прекрасное и математика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 27. Поэзия чисел. Прекрасное и математика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Поэзия — недоказуемая истина. Математика же, напротив, состоит из доказательств. И все-таки у этих двух сфер есть что-то общее. Ученый Анри Пуанкаре писал: «Думать, что математика затрагивает лишь интеллект, означало бы забыть о красоте математики, элегантности геометрии, которые прекрасны в самом полном смысле этого слова». Математик находится посередине между наукой и искусством, и это подтверждает неизбежную связь между самой абстрактной из наук и человеческими эмоциями. Цель этой книги — на нескольких ярких примерах показать красоту математики.

Том 27. Поэзия чисел. Прекрасное и математика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 27. Поэзия чисел. Прекрасное и математика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Именно поэтому математический контекст позволяет нам лучше оценить красоту математики. Как мы уже объясняли в главе 2, главное различие между литературой и математикой с эстетической точки зрения заключается в том, что предметом их рассмотрения являются разные объекты. Литература изучает чувства, эмоциональную составляющую человеческой природы, а математика рассматривает числа, фигуры и абстракции. Чувства и эмоции нам хорошо знакомы, благодаря этому мы можем понять эстетическую ценность романа, в то время как холодность и абстрактность математических объектов затрудняют их восприятие. Именно поэтому важно учитывать эмоциональный контекст, которого не лишена математика: он позволяет очеловечить математику и предрасполагает к эстетическому наслаждению.

Однако, как мы отмечали в предисловии, цель этой книги — не засыпать читателя аргументами и доводами, а привести примеры, на основе которых он сделает собственные выводы. В этой главе мы расскажем о том, как противопоставление абстрактного характера математики и эмоций тех, кто ее создал, помогает насладиться красотой науки и лучше понять человеческую природу. В качестве примера мы выбрали бесспорно красивые математические объекты — фракталы, а эмоциональный контекст предоставят события из жизни математика Феликса Хаусдорфа(1868–1942) , предсказавшего существование фракталов.

* * *

ДРЕВНЕЙШАЯ ИЗ НАУК

Не будем подробно описывать обстоятельства, которые связывают математику с наиболее эмоциональной частью человеческой природы и восходят к моменту зарождения науки. Момент зарождения математики ознаменован созданием чисел. Не будем забывать, что числа ожидают нас «на кончиках пальцев», они словно являются частью нашего тела. Также не будем забывать, какую огромную роль сыграли наши руки в том, кто мы есть сейчас. Истоки человеческой истории окутаны мраком, поэтому сложно оценить, чему люди научились раньше: считать на пальцах, рисовать на стенах пещер, хоронить умерших или создавать божеств. Для всех этих действий, в том числе для счета, характерны неустанная борьба страстей и здравого смысла. Всё это позволяет назвать математику древнейшей из наук. Как видите, эмоциональный контекст пронизывает ее до самых корней, восходящих к древнейшей истории homo sapiens как вида.

* * *

Фракталы и размерность Хаусдорфа

Фрактал можно назвать множеством, аномальным с точки зрения наших органов чувств. Однако его аномальность относится к особенностям нашего восприятия. В основе этой аномальности лежит понятие размерности пространства, и это понятие существенно расширил немецкий математик Феликс Хаусдорф в 1919 году.

Открытия немецкого математика Феликса Хаусдорфавпоследствии позволили - фото 58

Открытия немецкого математика Феликса Хаусдорфавпоследствии позволили сформировать современную теорию фракталов.

Хаусдорф счел классическое определение размерности объектов очень узким как с математической, так и с философской точки зрения, а классификацию тел согласно их размерности — примитивной. Он сказал, что будет несколько затруднительно и, возможно, даже некорректно считать, что объект имеет размерность 1, если он имеет только длину (например, нить или пружина), размерность 2 — если он имеет длину и ширину (лист бумаги или поверхность сферы), и размерность 3, если, помимо длины и ширины, он имеет высоту (сфера или коробка для обуви). Чтобы расширить классическое понятие размерности, Хаусдорф предложил новое определение, более сложное и общее с математической точки зрения.

Величина, введенная Хаусдорфом, позволяет намного точнее определить размерность объекта. Вопреки тому, что нам подсказывают органы чувств, существуют объекты, размерность которых выражается дробями, например 1/2, иррациональными числами, в частности √5, и даже еще более необычными числами. Прошло больше 50 лет с момента, когда Хаусдорф ввел новое понятие размерности, прежде чем Бенуа Мандельброт(1924–2010) , французский математик польского происхождения, определил фракталы как множества, имеющие дробную размерность Хаусдорфа.

Бенуа Мандельброт математик который ввел термин фрактал На этой фотографии - фото 59

Бенуа Мандельброт, математик, который ввел термин «фрактал». На этой фотографии он изображен на конференции в Варшаве в 2005 году.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 27. Поэзия чисел. Прекрасное и математика»

Представляем Вашему вниманию похожие книги на «Том 27. Поэзия чисел. Прекрасное и математика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 27. Поэзия чисел. Прекрасное и математика»

Обсуждение, отзывы о книге «Том 27. Поэзия чисел. Прекрасное и математика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x