Если мы используем функцию Гомпертца в ином контексте, в частности применительно к раковым заболеваниям, то размер опухоли у будет описан выражением:
где у(0) — начальный размер опухоли. Если пациент проходит лечение, то у(0) будет меньше К , в противном случае размер опухоли будет увеличиваться.
Кривая Гомпертца, описывающая рост раковой опухоли ( N— размер опухоли, t— время).
Эта функция весьма схожа с сигмоидой (логистической функцией): рост опухоли замедлен в начале и конце процесса. Замедление в конце процесса кажется очевидным, если учесть, что по мере роста опухоли клетки, расположенные внутри нее, получают меньше кислорода, отмирают и вызывают некроз ядра опухоли. В результате ее размер стабилизируется: рост внешней части уравновешивается отмиранием клеток во внутренней части.
Этому же закону подчиняется и динамика роста некоторых предприятий, в частности тех, где большую роль играют технологии, — фармацевтических компаний или операторов мобильной связи. Вначале затраты на исследования, патенты и т. д. превышают доходы от продаж, затем компания переживает период бурного роста и получает прибыль. На следующем этапе продажи падают, так как рынок постепенно насыщается. Также функцией Гомпертца описывается рост органов эмбриона или, что еще любопытнее, регенерация хвоста у ящерицы.
Хотя приведенное выше выражение может показаться сложным, следует понимать, что благодаря компьютерам вычислить его значение сравнительно легко. По сути, речь идет о достаточно простом выражении вида
, в котором показатель степени возводится в новую степень.
В 1980-е годы исследователь Уэлдон заметил, что этой функцией не очень точно описывается рост опухолей малых размеров, поскольку в ней не учтены некоторые биологические аспекты, в частности роль иммунной системы. В поправке Уэлдона утверждается, что на первом этапе роста опухоли раковые клетки не сражаются за доступные ресурсы, и их рост описывается экспоненциальным законом, или моделью Мальтуса. Однако по достижении некоторого критического размера рост опухоли будет описываться уже не моделью Мальтуса, а функцией Гомпертца.
* * *
МАТЕМАТИКА И НОВЫЕ ПУТИ ИССЛЕДОВАНИЯ
В 2005 году исследователь Антонио Бру из мадридского университета Комплутенсе предположил, что на поздних стадиях раковые заболевания можно излечивать, вызывая сильное и продолжительное воспаление тканей вокруг опухоли. Эта гипотеза стала результатом математических исследований роста раковых клеток. В ходе исследований было отмечено, что рост всех клеток подчиняется одной схеме, которую Бру назвал схемой универсальной динамики роста опухолей. В этой модели клетки на границе опухоли играют определяющую роль в методе лечения, предложенном Бру. Первоначальное скептическое отношение к гипотезе отчасти было вызвано тем, что использованная математическая модель отличалась от классических моделей раковых заболеваний. Во-первых, в ней предполагалось, что рост клеток подчиняется не экспоненциальному, а линейному закону, а во-вторых, считалось, что рост опухоли зависит не от количества питательных веществ, а от свободного пространства. Это прекрасный пример того, как математика подсказывает исследователям новые пути лечения рака.
Математическая модель и результат компьютерного моделирования роста раковой опухоли.
* * *
СПИД, свиной грипп и другие заболевания, которые можно изучить с помощью математики
В 1983 году французский исследователь Люк Монтанье описал вирус СПИДа, или ВИЧ (вирус иммунодефицита человека). Он представляет собой сферу диаметром 100 нанометров и имеет внешнюю белковую оболочку. Вирусологи называют этот вирус ретровирусом, так как его геном образован цепочкой РНК. По данным Всемирной организации здравоохранения, в 2006 году в мире насчитывалось примерно 39,3 миллиона человек, зараженных вирусом СПИДа, примерно 24 миллиона из них проживали на Африканском континенте.
Читать дальше