Rafael Lahoz-Beltra - Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Здесь есть возможность читать онлайн «Rafael Lahoz-Beltra - Размышления о думающих машинах. Тьюринг. Компьютерное исчисление» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2015, Издательство: Де Агостини, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Размышления о думающих машинах. Тьюринг. Компьютерное исчисление»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Размышления о думающих машинах. Тьюринг. Компьютерное исчисление», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
А НЕ А А И-НЕ В
0 0 1
0 1 1
1 0 1
1 1 0
На следующей схеме показано как соединить вентили ИНЕ между собой чтобы - фото 38

На следующей схеме показано, как соединить вентили И-НЕ между собой, чтобы получить вентили И и ИЛИ.

Взаимное соединение вентилей ИНЕ для получения вентиля И слева и вентиля ИЛИ - фото 39

Взаимное соединение вентилей И-НЕ для получения вентиля И (слева) и вентиля ИЛИ (справа) со входами А, В и выходом Q.

В статье «Умные машины», одной из первых в мире работ по искусственному интеллекту, Алан Тьюринг использовал вентили И-НЕ для симуляции нейронных цепей, которые назвал нейронными цепями типа В.

Нейронная сеть изображенная Сантьяго РамониКахалем слева и искусственная - фото 40

Нейронная сеть, изображенная Сантьяго Рамон-и-Кахалем (слева), и искусственная нейронная сеть (справа).

Эти волокна определяют конфигурацию нейронов: возбужденное состояние или нейтральное. В возбужденном состоянии, когда волокно Р активно, если модификатор связи получает на входе input 0 или 1, на выходе output будет возвращен тот же результат, 0 или 1 соответственно. С другой стороны, в нейтральном состоянии, когда волокно I активно, модификатор соединения будет вести себя так, что при любой величине на входе input, на выходе output результат всегда будет 1.

Кроме этих модификаторов, модель искусственного нейрона предполагала, что каждый нейрон имел два входа: ВХОД 1 и ВХОД 2 — и один ВЫХОД. Если оба входа находились в возбужденном состоянии, величина на ВЫХОДЕ получалась с применением булева оператора И-НЕ (вентиль И, выход которого соединяется с вентилем НЕ).

ВХОД 1 ВХОД 2 выход
0 0 1
0 1 1
1 0 1
1 1 0

Напротив, если ВХОД 1 находился в неактивном состоянии, величина на ВЫХОДЕ была равна обратной величине на ВХОДЕ 2, то есть 1, когда на ВХОДЕ 2 было 0 и наоборот.

ВХОД 1 ВХОД 2 выход
0 0 1
0 1 0
1 0 1
1 1 0

Если мы сравним модель искусственного нейрона Тьюринга с моделью Маккалока — Питтса, то увидим, что в последней величина на ВЫХОДЕ рассчитывается с заменой модификатора соединения на величину коэффициента w, который отражает синаптическую пластичность нейронов, то есть лучшую или худшую проходимость сигнала от одного нейрона к другому через синаптическую связь. Согласно формальной модели Маккалока — Питтса, нейрон ведет себя как калькулятор, способный вычислять сумму входных сигналов. Умножим каждый сигнал или ВХОД i на соответствующий коэффициент wi, сумму всех сигналов обозначим как ИТОГ:

ИТОГ = Σwi ВХОДi

После выполнения данной операции нейрон «решает», достаточна ли полученная информация ИТОГ для активации, или возбуждения. В самой элементарной модели нейрона величина ВЫХОДА получается с помощью ступенчатой функции:

1 ИТОГ ≥ U

ВЫХОД =

0 ИТОГ ≤ U

При этом величина порога U устанавливается предварительно. Обратим внимание, что эта величина показывает чувствительность нейрона к внешнему стимулу: нейрон более чувствителен, чем ближе к нулю величина ί, так как чем меньше порог, тем вероятнее, что ИТОГ превзойдет его величину при возбуждении нейрона. Если величина на ВЫХОДЕ равна нулю, нейрон останется в состоянии покоя, если на ВЫХОДЕ будет некоторая величина, нейрон перейдет в возбужденное состояние. При возбуждении нейрон отправляет ответ, величину 1, следующему нейрону, для которого это будет величина на ВХОДЕ. В других случаях величина 1 в комбинации с величинами на ВЫХОДЕ от других нейронов, например 1001, будет ответом нейронной сети на входящий сигнал.

ТЕСТ ТЬЮРИНГА

Тьюринг исследовал вопрос, как определить, разумно ли ведет себя машина (компьютер). Ученый очень изящно избежал необходимости дать определение разуму и принял следующую точку зрения: хотя машина не разумна в том смысле, в каком это относится к человеку, ее поведение может быть разумным.

Такая форма рассмотрения вопроса сегодня называется поведенческим подходом. Например, нам известно, что программы для игры в шахматы не являются разумными, но при игре они ведут себя так, будто они разумны. При этом Алан Тьюринг не дал определения разума и не ответил на вопрос, могут ли машины мыслить. На основе этих идей Тьюринг придумал испытание, известное как тест Тьюринга, состоящее в том, что машину, компьютер или программу, разумное поведение которой нужно оценить, подвергают следующей процедуре. Представим себе человека, у которого есть монитор и клавиатура. С их помощью он может задавать вопросы компьютеру, находящемуся в другой комнате. Ответ высвечивается на экране его монитора. Например, человек печатает на английском языке с помощью клавиатуры последнюю фразу, сказанную компьютером HAL-9000 в фильме «2001 год: Космическая одиссея»:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Размышления о думающих машинах. Тьюринг. Компьютерное исчисление»

Представляем Вашему вниманию похожие книги на «Размышления о думающих машинах. Тьюринг. Компьютерное исчисление» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Размышления о думающих машинах. Тьюринг. Компьютерное исчисление»

Обсуждение, отзывы о книге «Размышления о думающих машинах. Тьюринг. Компьютерное исчисление» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x