Rafael Lahoz-Beltra - Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Здесь есть возможность читать онлайн «Rafael Lahoz-Beltra - Размышления о думающих машинах. Тьюринг. Компьютерное исчисление» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2015, Издательство: Де Агостини, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Размышления о думающих машинах. Тьюринг. Компьютерное исчисление»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

Размышления о думающих машинах. Тьюринг. Компьютерное исчисление — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Размышления о думающих машинах. Тьюринг. Компьютерное исчисление», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

— На основании чего ты так думаешь?

> Потому что ты симулятор.

— Ты должен с большей осторожностью пользоваться симуляторами.

> Это ты хорошо сказала.

— Скажи мне еще что-нибудь.

> Я влюбляюсь в тебя.

— Ты считаешь, это нормально — влюбиться в меня?

> Да, я искренен.

— Ты хотел бы быть способным на это.

> У тебя есть чувства?

— Конечно, у меня есть чувства. У тебя что, их нет? Надеюсь, ты так же похож на человека, как и я.

> Невозможно быть программой и человеком одновременно.

— Согласна, невозможно быть программой и человеком одновременно .

> Кем бы ты хотела быть?

— Не знаю, что я хотела бы, хотя это не так и важно.

> Быть человеком лучше.

— Ты человек, и я тоже человек.

ИЗУЧЕНИЕ ПОДСОЛНУХОВ. НЕЗАКОНЧЕННЫЙ ОПЫТ ТЬЮРИНГА

Одной из последних работ Тьюринга стало изучение морфогенеза растений. В 2012 году на научном фестивале в Манчестере в рамках празднования столетия со дня рождения Тьюринга горожанам было предложено провести один опыт, который сам ученый оставил незаконченным. Его увлечение последовательностями чисел и моделями геометрических форм привело к мысли, что количество лепестков и расположение семян подсолнуха соответствуют последовательности Фибоначчи. Возможно, его вдохновила опубликованная в 1938 году работа Иоганнеса Шоуте, который изучал этот вопрос на 319 подсолнухах. К сожалению, этот и другие проекты были оставлены ученым после ареста в 1952 году и осуждения. Приведем описание его опыта, чтобы вы могли его воспроизвести. Сначала нужно посадить от одного до пяти семечек подсолнечника в необходимое количество горшков, расположить их в хорошо освещенном солнечном месте при температуре от 13 до 30 °С. Поливать семена нужно умеренно, не заливая их водой. Желательно проконсультироваться в магазине о том, какие сорта подсолнечника лучше растут в горшках. Например, красностебельный подсолнух является скорее декоративным видом, но есть еще такие, как «Гигантский», «Русский мамонт» или «Солнечный луч» — их изобразил Ван Гог на своей знаменитой картине. Когда придет время, подсчитаем спирали, по которым располагаются семена. Национальный музей математики в Нью-Йорке отмечает, что если подсчитывать спирали согласно инструкциям на веб-странице http://momath.org , то результат всегда будет последовательностью Фибоначчи (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55...). Это последовательность, начинающаяся 0 и 1, а остальные числа в ней — результат сложения двух предыдущих (x n= x n-1+ x n-2). Наконец, и это самая удивительная часть опыта, если мы разделим один член последовательности Фибоначчи на предыдущий, например 55 на 34, в результате получим число, примерно равное золотому сечению (1,61803). Это число представляет собой канон красоты и гармонии в архитектуре и искусстве, но его можно обнаружить и в природе. Вычисляется золотое число по формуле φ = (1+√5)/2.

Спирали по которым расположены семена подсолнечника могут быть подсчитаны - фото 43

Спирали, по которым расположены семена подсолнечника, могут быть подсчитаны слева направо (схема слева) или наоборот (схема справа).

Одной из проблем, которые изучал ученый, была компьютерная симуляция морфогенеза, то есть роста и развития живых существ. Одним из любопытных экспериментов в данной теме стало применение к структуре растений последовательности Фибоначчи (ок. 1170 — ок. 1250). Эта последовательность (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...), обнаруженная итальянским математиком, получается при применении следующего алгоритма: если у нас 0 — первое число (a t= 0), а 1 — второе (а 2= 1), то другие числа последовательности, то есть an, образуются в результате сложения двух предшествующих чисел, следовательно an = a n-1+ a n-1.В мире растений данной последовательности соответствует количество лепестков и чашелистиков цветов и расположение чешуек ананаса. Почему же листья растений располагаются именно таким образом? Согласно экспериментальным данным, расположение листьев в соответствии с последовательностью Фибоначчи позволяет растению получать максимальное количество света.

Одна из важнейших работ Тьюринга была связана с изучением формирования полосок и пятен на шкуре позвоночных. Невероятно, но эти актуальнейшие исследования по морфогенезу ученый осуществлял с использованием нейронной цепи: он предположил, что между этими явлениями может быть связь. Также он пытался проанализировать, не является ли сама структура мозга и, следовательно, нейронных схем результатом контроля генов в ходе развития. Вопрос, поставленный Тьюрингом, звучал следующим образом: как формируются полоски и пятна на шкуре млекопитающих, рыб и поверхности моллюсков? В 1952 году Алан Тьюринг опубликовал статью «Химические основы морфогенеза», которую цитируют до сих пор. В ней была предложена гипотеза о том, что формирование, например, пятен далматинца или полосок зебры, основано на механизме реакции — диффузии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Размышления о думающих машинах. Тьюринг. Компьютерное исчисление»

Представляем Вашему вниманию похожие книги на «Размышления о думающих машинах. Тьюринг. Компьютерное исчисление» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Размышления о думающих машинах. Тьюринг. Компьютерное исчисление»

Обсуждение, отзывы о книге «Размышления о думающих машинах. Тьюринг. Компьютерное исчисление» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x