Месяцем позже Сомс вручил мне номер газеты Manchester Garble [36] Здесь обыгрывается название британской газеты The Manchester Guardian (в настоящее время The Guardian ). Manchester Garble можно перевести как «Манчестерские фальсификации». – Прим. ред.
.
– Господи Боже! – воскликнул я. – Лорд Баске́ умер, а Баскет-холл выгорел дотла! Страховая компания, в которой было застраховано семейство, отказало в выплате, потому что действия Вредоносных сил абсолютного зла не подпадают под страховой случай. Род Баске́ разорен! Леди Иакинф помещена в лечебницу для неизлечимых душевнобольных!
Сомс кивнул.
– Чистое совпадение, я уверен, – сказал он. – Сейчас, задним числом, ясно, что мне, может быть, следовало сказать леди Иакинф насчет пуделя.
370, 371 и 407.
Несмотря на то что эта задача вроде бы не имеет никакого математического значения, нужно обладать хорошими знаниями математики, чтобы найти все четыре ее решения, и очень хорошими, чтобы доказать, что других решений не существует.
Я попробую кратко описать один из возможных подходов.
Поскольку числа с начальными нулями исключаются, нам остается проверить всего 900 возможных комбинаций. Но их количество можно сократить. Кубы всех десяти цифр равны 0, 1, 8, 27, 64, 125, 216, 343, 512 и 729. Сумма трех кубов составляет не более 999, поэтому можно заранее исключить числа, содержащие две девятки, две восьмерки, восьмерку и девятку и т. д.
Предположим, одна из цифр – это нуль. Тогда искомое число представляет собой сумму двух кубов из нашего списка. Из 55 подобных пар лишь две, 343 + 27 = 370 и 64 + 343 = 407, обладают нужным свойством.
Далее мы можем считать, что ни одна из цифр числа не равна 0. Предположим, одна из них равна 1. Аналогичные вычисления дают нам 125 + 27 + 1 = 153 и 343 + 27 + 1 = 371.
Теперь мы можем считать, что ни одна из цифр не равна ни 0, ни 1. Список кубов, с которыми можно дальше работать, при этом немного сокращается. И т. д.
Кое-какие уловки, к примеру учет четности или нечетности чисел, также помогают сократить объем вычислений. Этот довольно медленный, но систематический подход – а Сомс рекомендует ко всему подходить систематически – приводит нас к результату без каких бы то ни было серьезных препятствий на пути.
Здесь мы разрешим начальные нули:
четвертые степени: 0000 0001 1634 8208 9474;
пятые степени: 00000 00001 04150 04151 54748 92727 93084.
– Сомс! – воскликнул я. – Я ее решил!
– Да, убийца – графиня Лизелотта фон Финкельштейн, она ехала верхом на своем чистокровном жеребце по кличке Князь Игорь и вела в поводу трех упряжных лошадей, чтобы замаскировать следы на…
– Нет-нет, Сомс, речь не о вашем деле! Я о задаче!
Он бросил короткий взгляд на решение, которое я нацарапал на полях газеты.
– Верно. Случайное попадание, без сомнения.
– Нет, Сомс, я вывел его путем логических рассуждений на основе принципов, которые вы вложили в мою голову. Во-первых, я понял, что сумма чисел в каждой области должна равняться 20.
– Потому что полная сумма чисел во всех ячейках составляет (1 + 2 + 3 + 4) × 4 = 40 и ее следует поделить поровну между двумя областями, – не задумываясь отозвался Сомс.
– Именно. Далее, как только я решил сосредоточиться на большей области, решение начало складываться. В этой области четыре клетки в нижней строке – там должны быть числа 1, 2, 3, 4, расположенные в каком-то порядке; каким бы ни был порядок, сумма этих чисел равна 10. Так что оставшиеся три строки все вместе в сумме тоже должны дать 10. Единственный способ этого добиться – поставить в верхнюю строку числа 1, 2, 3 в каком-то порядке, а во вторую строку – 1 и 2 в каком-то порядке; третья строка в любом случае должна содержать 1.
– Почему?
– Любое другое число на этом месте сделает сумму слишком большой.
– Вы в самом деле учитесь, Ватсап. Очень хорошо: продолжайте.
Я улыбнулся в ответ на эту слабую похвалу, ведь услышать хоть какую-нибудь похвалу из уст Сомса не легче, чем выжать воду из камня.
– Ну, хорошо… теперь несложно проверить, что способ правильного заполнения ячеек только один. Числа во второй области расставляются вынужденно: так, в крайней правой клетке верхней строки должна стоять четверка, а затем четверки должны идти вниз по диагонали; затем две тройки также вынужденно встают на свои места, и, наконец, две двойки занимают оставшиеся пустыми клетки.
Читать дальше
Конец ознакомительного отрывка
Купить книгу