См. Laurent Bartoldi and André Henriques. Orange peels and Fresnel integrals, Mathematical Intelligencer 34 No. 4 (2012) 1–3.
Статья доступна на сайте: www.arxiv.org/abs/1202.3033
Нет, это неверно. Все утверждения, сделанные по ходу дела, верны, но вывод ошибочен.
Чтобы понять почему, рассмотрим лотерею, которая проводится еженедельно в небольшой известной провинции Лиллипутии. Шаров здесь всего три – 1, 2, 3 – и вынимаются два из них. Вы выигрываете, если заранее правильно называете эти два шара.
Существует три возможных результата розыгрыша:
12 13 23,
и все они равновероятны.
Первым числом является 1 с вероятностью 2/3 (это максимальная вероятность), 2 с вероятностью 1/3 или 3 с вероятностью 0.
Второе число – это 3 с вероятностью 2/3 (максимальная вероятность), 2 с вероятностью 1/3 или 1 с вероятностью 0.
Таким образом, по той же логике игрокам, чтобы максимально увеличить свои шансы, следует выбирать 13. Однако на самом деле все три варианта равновероятны, так что это попросту чепуха.
В общем и целом 1 с большей вероятностью окажется наименьшим числом в розыгрыше, поскольку в этом случае чисел, превышающих заданное число (то есть единицу), больше, чем в любом другом случае. А вовсе не потому, что единица может быть вытащена с большей вероятностью, чем какое бы то ни было другое число. Тот же эффект действует и в отношении других позиций, но не настолько очевидно.
КражаСлучай с зелеными носками 
– Глубокое знание лондонского преступного мира позволяет мне сразу же определить, кто злодей, – объявил Сомс.
– Кто?
– Это не имеет значения, пока у нас нет формальных доказательств его вины, Ватсап. Только доказательства способны убедить инспектора Роулейда из лондонской полиции, когда мы представим ему свои выводы. Во-первых, мы должны составить список возможных способов распределения цветов одежды между подозреваемыми.
– Это я могу, – сказал Ватсап. – Я немного владею элементарной комбинаторикой. Она весьма полезна, когда нужно определить, какую конечность ампутировать первой.
И он написал:
КЗБ КБЗ ЗКБ ЗБК БКЗ БЗК
– Буквы обозначают цвета предметов одежды в следующем порядке: пиджак, брюки, носки, – объяснил Ватсап. – Цвета нигде не повторяются, потому что об этом говорят свидетели, так что возможные варианты сводятся к данным перестановкам этих трех букв.
– Очень хорошо, – сказал Сомс. – И каким же должен быть наш следующий шаг?
– Э-э… составить таблицу всех способов распределения предметов одежды между тремя мужчинами. На это потребуется некоторое время, Сомс, поскольку сочетаний существует… э-э, 6 × 5 × 4… 120 штук.
– Не так, Ватсап. Подумав немного, мы сможем с самого начала исключить большинство сочетаний. Сосредоточимся для начала только на одном подозреваемом – скажем, на Джордже Грине. Предположим, к примеру, что Грин носит зеленый пиджак, коричневые брюки и белые носки: случай ЗКБ.
– Уф, но так ли это на самом деле?
– Это мое предположение, которое позволяет рассуждать дальше. Если мое предположение верно, из этого следует, что никто из остальных двух подозреваемых не может носить зеленый пиджак, или коричневые брюки, или белые носки, ведь только один из трех предметов каждого рода может быть заданного цвета. Так что для этих двоих мы можем исключить варианты ЗБК, КЗБ и БКЗ из оставшихся пяти возможных вариантов. Это оставляет нам только варианты КБЗ и БЗК. Которые, обратите внимание, представляют собой циклические перестановки варианта ЗКБ. Мы можем распределить эти варианты между Биллом Брауном и Уолли Уайтом только двумя способами, – Сомс начал заполнять таблицу.
– Но, Сомс, – воскликнул Ватсап, – может быть, Джордж Грин не носит одежду цветов ЗКБ!
– Вполне возможно, – невозмутимо ответил Сомс. – Это всего лишь две верхние строки моей таблицы. Я могу провести аналогичные рассуждения для пяти остальных вариантов одежды Джорджа Грина. Разумеется, при этом перестановки тоже получатся циклическими. Внесем в таблицу все 12 возможных вариантов.
Ватсап скопировал себе в блокнот итоговую таблицу (см. ниже).
Когда он закончил, Сомс кивнул.
– А теперь, мой дорогой Ватсап, нам остается только исключить невозможные комбинации при помощи имеющихся у нас данных…
– Потому что в результате то, что останется, каким бы невероятным оно ни казалось, должно быть истиной! – воскликнул Ватсап.
Читать дальше
Конец ознакомительного отрывка
Купить книгу