Иэн Стюарт - Математические головоломки профессора Стюарта

Здесь есть возможность читать онлайн «Иэн Стюарт - Математические головоломки профессора Стюарта» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Альпина нон-фикшн, Жанр: Математика, sci_popular, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математические головоломки профессора Стюарта: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математические головоломки профессора Стюарта»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга «Математические головоломки профессора Стюарта» известного математика и популяризатора математической науки Иэна Стюарта – сборник задач, головоломок и увлекательных историй. Повествование в книге основано на приключениях детектива-гения Хемлока Сомса и его верного друга, доктора Джона Ватсапа. Они ломают головы над решением задач с математической подоплекой.
Автор уделяет внимание математическим датам, загадкам простых чисел, теоремам, статистике и множеству других интересных вопросов. Эта умная, веселая книга демонстрирует красоту математики. Из книги читатель узнает о форме апельсиновой кожуры, евклидовых каракулях, блинных числах, о гипотезе квадратного колышка и других решенных и нерешенных задачах. Книга будет интересна всем, кто не равнодушен к загадкам, любит математику и решение головоломок.

Математические головоломки профессора Стюарта — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математические головоломки профессора Стюарта», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 2011 г. Дэвид Бейли, Джонатан Боруэйн, Эндрю Маттинли и Гленн Уайтвик составили обзорное исследование этого вопроса [27] David Bailey, Jonathan Borwein, Andrew Mattingly, and Glenn Wightwick. The computation of previously inaccessible digits of π2 and Catalan's constant, Notices of the American Mathematical Society 60 (2013) 844–854. . Авторы описали способ нахождения знаков числа π² в системе счисления с основанием 64, знаков числа π² в системе счисления с основанием 729 и знаков числа, известного как постоянная Каталана, в системе счисления с основанием 4096, начиная с 10-триллионной позиции.

История начинается с последовательности, известной еще Эйлеру:

Благодаря степеням двойки которые здесь фигурируют этот ряд можно - фото 141

Благодаря степеням двойки, которые здесь фигурируют, этот ряд можно преобразовать в метод вычисления конкретных двоичных знаков ln 2. По мере роста номера знака вычисления остаются реализуемыми, хотя и занимают гораздо больше времени.

Формула ББП выглядит так:

и степени 16 делают возможным вычисление конкретных шестнадцатеричных знаков - фото 142

и степени 16 делают возможным вычисление конкретных шестнадцатеричных знаков числа π. Поскольку 16 = 2 4, ряд можно использовать также для вычисления двоичных знаков.

Ограничивается ли такой подход только этими двумя константами? С 1997 г. математики ведут непрекращающийся поиск аналогичных бесконечных рядов для других постоянных величин, и им уже удалось найти их немалое количество. В том числе для π², ln² 2, π ln 2, ζ (3), π³, ln³ 2, π²ln 2, π 4, ζ (5),

где

есть Риманова дзетафункция Удалось сделать то же для постоянной Каталана - фото 143

есть Риманова дзета-функция. Удалось сделать то же для постоянной Каталана

Некоторые из этих рядов дают знаки в троичной системе счисления или системе с - фото 144

Некоторые из этих рядов дают знаки в троичной системе счисления или системе с основанием, равным какой-нибудь степени 3. К примеру, при помощи поразительной формулы Дэвида Броудхерста

можно вычислять знаки π² в системе счисления с основанием 729 3 6 Нормально - фото 145

можно вычислять знаки π² в системе счисления с основанием 729 = 3 6.

Нормально ли число π?

Десятичные знаки числа π кажутся случайными, но они не могут быть по-настоящему случайными, потому что всякий раз при вычислении числа π вы получаете ровно одно и то же (если, конечно, не ошибаетесь в процессе вычисления). Считается, что, как почти в любой случайной последовательности цифр, где-то в десятичном выражении числа π встречается любая конечная последовательность цифр. Более того, данная последовательность встречается бесконечно часто, хотя и с кучей мусора между двумя последовательными включениями, и в той же пропорции, которую следовало бы ожидать для случайной последовательности.

Можно доказать, что это свойство, известное как нормальность, выполняется для «почти всех» чисел: в любом достаточно большом наборе чисел доля нормальных подходит сколь угодно близко к 100 %. Но это правило оставляет и лазейку, поскольку любое конкретное число, скажем π, может оказаться исключением. Но является ли оно исключением? Мы не знаем. До недавнего времени этот вопрос казался безнадежным, но формулы, подобные приведенным выше, открыли новую линию атаки, которая в принципе может решить вопрос в отношении двоичных (или шестнадцатеричных) чисел.

Связь между этими задачами возникает через другую математическую процедуру, итерационную. Здесь мы начинаем с какого-то числа, применяем к нему некое правило, чтобы получить другое число, и последовательно применяем то же правило к полученным числам, чтобы получить некую последовательность чисел. К примеру, если мы начнем с 2 и применим правило «возвести в квадрат», получим последовательность

2 4 16 256 65 636 4 294 967 296 …

Двоичные знаки числа, к примеру ln 2, можно получить при помощи итерационной формулы

начиная с x 0 0 Пояснение mod 1 означает вычесть целую часть так что π - фото 146

начиная с x 0 = 0. Пояснение (mod 1) означает «вычесть целую часть», так что π (mod 1) = 0,14159… Эта формула привела бы к доказательству того, что ln 2 нормален по основанию 2, если бы удалось показать, что полученные в результате числа равномерно распределены по интервалу от 0 до 1. Подобная «равнораспределенность» встречается довольно часто. К несчастью, никто не знает, как доказать, что она распространяется на приведенную итеративную формулу, но сама по себе эта идея перспективна и, вполне возможно, со временем даст результат.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математические головоломки профессора Стюарта»

Представляем Вашему вниманию похожие книги на «Математические головоломки профессора Стюарта» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математические головоломки профессора Стюарта»

Обсуждение, отзывы о книге «Математические головоломки профессора Стюарта» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x