Иэн Стюарт - Математические головоломки профессора Стюарта

Здесь есть возможность читать онлайн «Иэн Стюарт - Математические головоломки профессора Стюарта» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Альпина нон-фикшн, Жанр: Математика, sci_popular, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математические головоломки профессора Стюарта: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математические головоломки профессора Стюарта»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга «Математические головоломки профессора Стюарта» известного математика и популяризатора математической науки Иэна Стюарта – сборник задач, головоломок и увлекательных историй. Повествование в книге основано на приключениях детектива-гения Хемлока Сомса и его верного друга, доктора Джона Ватсапа. Они ломают головы над решением задач с математической подоплекой.
Автор уделяет внимание математическим датам, загадкам простых чисел, теоремам, статистике и множеству других интересных вопросов. Эта умная, веселая книга демонстрирует красоту математики. Из книги читатель узнает о форме апельсиновой кожуры, евклидовых каракулях, блинных числах, о гипотезе квадратного колышка и других решенных и нерешенных задачах. Книга будет интересна всем, кто не равнодушен к загадкам, любит математику и решение головоломок.

Математические головоломки профессора Стюарта — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математические головоломки профессора Стюарта», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В настоящее время мы можем пойти значительно дальше. Миллион – это 1 000 000, так, мелочь. Мы можем получить намного более крупные числа, просто подставив в конце еще нуликов и наблюдая, как возрастает число стандартных групп по три цифры (математики нередко разделяют их тонким пробелом для наглядности). В западном мире существуют стандартные наименования для больших чисел, отражающие эту традицию: миллион, биллион, триллион, … и далее до сентиллиона. Но человек так устроен, что у него не может быть все просто, особенно в математике, поэтому эти слова имеют (или, по крайней мере, имели раньше) разные значения по разные стороны Атлантики. В США биллион равен 1 000 000 000, но в Великобритании этим словом называют 1 000 000 000 000 – то есть то, что американцы назвали бы триллионом. Однако в нынешнем взаимосвязанном мире победил американский вариант – возможно, потому, что «миллиард» (британское название для тысячи миллионов), во-первых, устаревает и, во вторых, его слишком легко спутать с «миллионом». А биллион [24] Мы приводим здесь рассуждения автора, но далее будем по-прежнему пользоваться русскими вариантами названий: миллион, миллиард, триллион. – Прим. пер. – чудесное круглое число для международных финансов, по крайней мере до тех пор, пока мировые банки не выбросят на ветер финансового кризиса так много, что нам придется привыкать думать в триллионах.

Эти же числа можно записать и проще, если использовать степени 10. В этом случае 10 6обозначает 1 с шестью нулями, то есть миллион. Число 6 здесь называют показателем экспоненты . Биллион – это 10 9(миллиард), или 10 12(триллион) в старомодном британском варианте. Сентиллион превращается в 10 303(10 600в британском варианте). Признанные расширения к стандартным названиям существуют вплоть до миллиниллиона, 10 3003. Существует несколько систем таких расширений, но жизнь слишком коротка, чтобы описывать их все или хотя бы подробно описывать разницу между ними.

Еще два названия для больших чисел, которые также можно найти в большинстве словарей, – это гуголь и гугольплекс . Гуголь – это 10100 (1 со ста нулями); название придумал в свое время девятилетний племянник Джеймса Ньюмена Милтон Сиротта. Сиротта предложил и еще большее число – гуголплекс, которое определил так: «Я писал нули, пока ты не устал». Некоторая неопределенность количества нулей потребовала уточнения: «Я поставил еще гугол нулей».

Это более интересно, поскольку здесь мы сталкиваемся с той же проблемой, с какой столкнулись когда-то римляне, с той разницей, что они занялись ею намного раньше. Если вы попытаетесь записать гуголплекс в десятичном виде, как 1 000 000 000 …, то вам не хватит жизни, чтобы добраться до его конца. Строго говоря, вам не хватит для этого времени жизни всей Вселенной. Считая, что современные космологические представления верны, Вселенная, вероятно, закончит свое существование раньше, чем вы закончите писать это число. Во всяком случае, места для всех этих нулей вам не хватит даже в том случае, если каждый из них размером будет не больше кварка.

Однако существует и компактный способ записи гуголплекса: итерационная экспонента, или экспонента экспоненты. А именно:

10 10¹⁰⁰.

И раз уж вы начали думать о подобных вещах, то добавим, что этот метод позволяет добраться до по-настоящему очень больших чисел. В 1976 г. ученый-компьютерщик Дональд Кнут придумал способ записи очень больших чисел, которые, помимо всего прочего, фигурируют в некоторых областях теоретической информатики. Когда я говорю «очень больших», я подразумеваю очень большие числа – настолько большие, что способа даже начать их записывать в традиционной нотации просто не существует. Гуголплекс, то есть единица с 10 100нулей, меркнет по сравнению с большинством чисел, которые можно записать при помощи нотации со стрелочкой Кнута.

Кнут начинает с записи

ab = ab .

К примеру, 110↑2 = 100, 10↑3 = 1000, 10↑100 – гугол, а 10↑(10↑100) – гуголплекс. Традиционная договоренность о том, в каком порядке вычисляются экспоненты (справа налево), позволяет нам записать это проще – как 10↑10↑100. Не нужно обладать особенно развитым воображением, чтобы записать, скажем, 10↑10↑10↑10↑10↑10↑10.

Но это только начало. Пусть

a ↑↑ 4 = a(a(aa)) .

К примеру,

2↑↑4 = 2↑(2↑(2↑2)) = 2↑(2↑4) = 2↑16 = 65 536

и

3↑3 = 3↑3↑3 = 3↑27 = 7 625 597 484 987.

Числа растут настолько стремительно, что записать их цифра за цифрой очень скоро становится попросту невозможно. К примеру, в числе 4↑↑4 насчитывается 155 десятичных знаков. Но в этом-то и смысл : стрелочная нотация обеспечивает компактный способ обозначения гигантских чисел. Однако мы едва начали. Пусть

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математические головоломки профессора Стюарта»

Представляем Вашему вниманию похожие книги на «Математические головоломки профессора Стюарта» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математические головоломки профессора Стюарта»

Обсуждение, отзывы о книге «Математические головоломки профессора Стюарта» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x