Иэн Стюарт - Математические головоломки профессора Стюарта

Здесь есть возможность читать онлайн «Иэн Стюарт - Математические головоломки профессора Стюарта» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Альпина нон-фикшн, Жанр: Математика, sci_popular, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математические головоломки профессора Стюарта: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математические головоломки профессора Стюарта»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга «Математические головоломки профессора Стюарта» известного математика и популяризатора математической науки Иэна Стюарта – сборник задач, головоломок и увлекательных историй. Повествование в книге основано на приключениях детектива-гения Хемлока Сомса и его верного друга, доктора Джона Ватсапа. Они ломают головы над решением задач с математической подоплекой.
Автор уделяет внимание математическим датам, загадкам простых чисел, теоремам, статистике и множеству других интересных вопросов. Эта умная, веселая книга демонстрирует красоту математики. Из книги читатель узнает о форме апельсиновой кожуры, евклидовых каракулях, блинных числах, о гипотезе квадратного колышка и других решенных и нерешенных задачах. Книга будет интересна всем, кто не равнодушен к загадкам, любит математику и решение головоломок.

Математические головоломки профессора Стюарта — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математические головоломки профессора Стюарта», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Что при этом происходит? Может быть, вам, прежде чем читать дальше, захочется самому нарисовать пару прямоугольников.

Ну, хорошо, продолжаем. Я начал с длинного узкого прямоугольника, и вот что получилось.

В конце концов я получил маленький квадратик на котором мой прямоугольник - фото 81

В конце концов я получил маленький квадратик, на котором мой прямоугольник закончился.

Всегда ли так получается? Всякий ли прямоугольник в конце концов заканчивается? Это хороший вопрос, способный дать математику пищу для размышлений.

Какого размера был мой прямоугольник? Ну, последний рисунок показывает, что:

• сумма сторон двух маленьких квадратиков равна стороне среднего квадрата;

• сумма сторон двух средних квадратов и одного маленького квадратика образует сторону большого квадрата и равна при этом одной из сторон прямоугольника;

• сумма сторон трех больших квадратов и одного среднего равна второй стороне прямоугольника.

Если сторона маленького квадратика равна единице, то сторона среднего квадрата равна 2, а сторона большого равна 2 × 2 + 1 = 5. Следовательно, короткая сторона прямоугольника равна 5, а длинная равна 3 × 5 + 2 = 17. Таким образом, я начал с прямоугольника размером 17 × 5.

Это интересно: глядя на то, как складываются квадраты, я могу определить размеры своего прямоугольника. Более тонкий момент: если процесс завершается, это означает, что обе стороны первоначального прямоугольника нацело делятся на одно и то же число – сторону последнего изъятого квадрата. Иными словами, отношение его сторон имеет форму p/q , где p и q – целые. Что делает его рациональным числом.

Это общая идея: если процесс деления на квадраты рано или поздно прекращается, значит, отношение сторон прямоугольника выражается рациональным числом. Более того, обратное тоже верно: если отношение сторон прямоугольника рационально, каракули рано или поздно закончатся. Так что «конечные» каракули в точности соответствуют «рациональным прямоугольникам».

Чтобы понять почему, взглянем на числа повнимательнее. По существу, рисунок сообщает нам следующее:

17 – 5 = 12;

12 – 5 = 7;

7 – 5 = 2.

После этого у нас остается прямоугольник 5 × 2 и пора переходить к среднему квадрату:

5 – 2 = 3;

3 – 2 = 1.

Остался прямоугольник 2 × 1, пора переходить к маленькому квадратику:

2 – 1 = 1;

1 – 1 = 0.

Стоп! И дело рано или поздно должно дойти до остановки, потому что все задействованные целые числа положительны и с каждым шагом они делаются все меньше и меньше. Так и должно быть, ведь мы каждый раз либо вычитаем из них что-то, либо оставляем, как есть. А последовательность положительных целых чисел не может уменьшаться до бесконечности. Если вы, к примеру, начнете с миллиона и будете все время уменьшать, то вам придется остановиться не более чем через миллион шагов.

Короче говоря, каракули сообщают нам вот что:

при делении 17 на 5 получается 3 с остатком 2;

при делении 5 на 2 получается 2 с остатком 1;

2 делится на 1 нацело с нулевым остатком,

а процесс останавливается, как только остаток становится равным нулю.

Евклид использовал подобные каракули для решения одной арифметической задачи: поиска наибольшего общего делителя для двух заданных целых чисел. Наибольший общий делитель – это наибольшее целое число, на которое оба заданных числа делятся нацело; его часто обозначают аббревиатурой НОД. К примеру, для чисел 4500 и 840 НОД равен 120.

Меня в школе учили искать НОД таким способом: разложить заданные числа на простые множители и посмотреть, какие множители у них окажутся общими. К примеру, пусть нам надо найти НОД чисел 68 и 20.

Раскладываем то и другое на простые множители:

68 = 2²× 17; 20 = 2²× 5.

НОД равен 2² = 4.

Применимость этого метода ограничена тем, что числа должны быть достаточно небольшими, чтобы их можно было быстро разложить на простые множители. Для более крупных чисел он совершенно неэффективен. Древние греки знали более эффективный способ – процедуру, которой они дали забавное название антифарезис . В данном случае ее применение выглядит так:

68 делим на 20, получаем 3 с остатком 8;

20 делим на 8, получаем 2 с остатком 4;

8 делим на 4, получаем 2 ровно.

Стоп!

Это тот же расчет, что мы проделали для 17 и 5, но теперь все числа вчетверо больше (но делятся они друг на друга столько же раз). Если вы расчертите прямоугольник 68 × 20 каракулями, то картинка получится та же, что и в прошлый раз, только последний маленький квадратик будет иметь размер 4 × 4, а не 1 × 1.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математические головоломки профессора Стюарта»

Представляем Вашему вниманию похожие книги на «Математические головоломки профессора Стюарта» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математические головоломки профессора Стюарта»

Обсуждение, отзывы о книге «Математические головоломки профессора Стюарта» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x