Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако существует одна важная особенность: беременность – явление довольно распространенное, тогда как терроризм – скорее редкое. Почти во всех случаях расчетная вероятность того, что данный пользователь станет террористом, крайне мала. Таким образом, итогом этого проекта стал бы не центр профилактики преступлений – как в фильме Minority Report («Особое мнение»), – в котором всеобъемлющий алгоритм Facebook раньше вас узнает, что вы собираетесь совершить преступление. Представьте себе нечто более непритязательное: скажем, список сотен тысяч пользователей, о которых Facebook с определенной степенью достоверности может сказать следующее: «Вероятность того, что люди из этой группы могут быть террористами или пособниками терроризма, в два раза больше, чем в случае обычных пользователей Facebook».

Что вы сделаете, если обнаружите, что человек, входящий в этот список, живет с вами по соседству? Наверное, позвоните в ФБР?

Прежде чем предпринимать этот шаг, давайте нарисуем еще одну матрицу.

Содержимое этой матрицы около 200 миллионов пользователей сети Facebook в - фото 58

Содержимое этой матрицы – около 200 миллионов пользователей сети Facebook в Соединенных Штатах. Линия между верхней и нижней частями матрицы отделяет будущих террористов (верхняя часть) от невиновных (нижняя часть). Безусловно, любая террористическая ячейка в США довольно немногочисленна. Скажем, если быть максимально подозрительными, в стране есть около 10 тысяч людей, за которыми федералам действительно стоит присматривать. Это один из каждых 20 тысяч пользователей общей пользовательской базы.

Разделение матрицы на левую и правую часть, собственно, и есть то, что делает Facebook: с левой стороны находится сотня тысяч людей, которых в Facebook считают с высокой степенью вероятности связанными с терроризмом. Давайте поверим Facebook на слово, будто их алгоритм настолько хорош, что отмеченные таким образом люди могут быть террористами с вероятностью в два раза большей, чем обычные пользователи. Следовательно, в этой группе один из 10 тысяч пользователей, или 10 человек, окажутся террористами, тогда как 99 990 – нет.

Если 10 из 10 000 будущих террористов находятся в верхней левой клетке, значит, в верхней правой находятся оставшиеся 9990 пользователей. С помощью тех же рассуждений можно сделать такой вывод: в пользовательской базе Facebook есть 199 990 000 людей, не являющихся террористами; 99 990 из них были отмечены алгоритмом и находятся в нижней левой клетке; оставшиеся 199 890 010 пользователей относятся к нижней правой клетке. Если сложить значения всех четырех клеток матрицы, получится 200 000 000 пользователей – другими словами, все пользователи Facebook в США.

Где-то в этой матрице, состоящей из четырех клеток, находится и ваш сосед по дому.

Но где именно? Он болтается где-то в левой половине матрицы, поскольку в Facebook его отнесли к числу подозреваемых, – и это все, что вы знаете.

Следует обратить внимание, что в левой половине матрицы почти нет террористов. На самом деле вероятность того, что ваш сосед невиновен, составляет 99,99 %.

В каком-то смысле это ситуация аналогична той панике, возникшей в Англии из-за противозачаточных препаратов. Включение пользователя в список Facebook в два раза увеличивает вероятность, что он террорист, что звучит ужасно. Но исходная вероятность сама по себе крайне мала, поэтому, если вы увеличите ее в два раза, она по-прежнему останется совсем небольшой.

Однако эту ситуацию можно интерпретировать и другим способом, который еще больше подчеркивает, насколько вероломными и сбивающими с толку могут быть рассуждения о неопределенности. Задайте себе такой вопрос: если человек на самом деле не является будущим террористом, какова вероятность, что его без всяких на то оснований включат в список Facebook?

В представленной выше матрице это означает следующее: если вы находитесь в нижней строке матрицы, какова вероятность того, что ваше место именно в левой клетке?

Это достаточно легко вычислить. В нижней половине матрицы 199 990 000 пользователей, из которых 99 990 находятся слева. Следовательно, вероятность того, что алгоритм Facebook отметит невиновного человека как потенциального террориста, составляет:

99 990/199 990 000,

или около 0,05 %.

Все верно: невиновный человек имеет всего один шанс из двух тысяч, что Facebook неправильно отнесет его к числу потенциальных террористов!

Какие чувства вы испытываете по отношению к своему соседу теперь ?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x