Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Участникам конкурса предоставили огромное количество данных о почти полумиллионе пользователей Netflix и около миллиона анонимных мнений, оценивающих 17 700 фильмов. Задача состояла в том, чтобы предсказать, как пользователи оценят фильмы, которых еще не видели . Есть данные – много данных, имеющих непосредственное отношение к поведению, – и вы пытаетесь прогнозировать это поведение. Очень сложная задача. В итоге прошло целых три года, прежде чем кто-то смог превысить 10 %-ную планку, причем произошло это, лишь когда несколько групп, принимавших участие в конкурсе, объединились и создали гибрид «почти пригодных» алгоритмов. Они надеялись, что это мощное алгоритмическое чудо выведет их на финишную прямую. Netflix так и не использовала победивший алгоритм в своем бизнесе, поскольку к моменту завершения конкурса компания уже переходила от рассылки DVD-дисков по почте к трансляции фильмов методом потокового вещания, что делало неиспользованные рекомендации совсем бесполезными {142}. Наверняка кто-то из вас пользовался услугами Netflix (или Amazon, или Facebook, или любого сайта, пытающегося навязать вам выбор продуктов на основании собранных о вас данных), поэтому вы и без меня знаете, насколько неудачны и до смешного нелепы их рекомендации. Но, по мере того как ваш профиль начнет пополняться все б о льшим количеством данных, их советы будут становиться более уместными. А может быть, и не будут.

С точки зрения таких компаний, нет ничего плохого в том, что они занимаются сбором и уточнением ваших данных. Конечно, для Target было бы удобнее всего, если они могли бы точно узнавать о беременности клиенток, отслеживая данные на их карточках постоянного покупателя. Но они этого не могут и потому не знают, беременны вы или нет. Тем не менее даже догадки о вашей беременности принесли бы компании пользу и дали бы возможность делать свои прогнозы на 10 % точнее, чем сейчас. То же самое касается Google. Компании нет необходимости точно знать, какой продукт вы хотите приобрести; все, что ей нужно, – иметь чуть более точное представление о ваших предпочтениях, чем конкурирующие фирмы. Как правило, компании работают с невысокой рентабельностью. Для вас нет ничего страшного, прогнозируете ли вы свое поведение точнее хотя бы процентов на десять или нет, но для компаний 10 % – это довольно большие деньги. Во время проведения конкурса я спросил вице-президента Netflix Джима Беннетта, который занимался вопросами рекомендаций, почему компания предложила столь большой приз. Он ответил, что мне следовало бы спросить, почему приз такой маленький. На первый взгляд небольшое повышение эффективности рекомендаций на 10 % позволило бы возместить этот миллион долларов за меньшее время, чем то, которое понадобилось для создания еще одного фильма The Fast and the Furious («Форсаж»).

Знает ли Facebook, что вы террорист?

Итак, корпорации, имеющие доступ к большим массивам информации, по-прежнему обладают довольно ограниченными знаниями о ваших персональных данных. Что тогда вас волнует?

И все-таки причины для беспокойства есть. Вот одна из них. Предположим, группа специалистов Facebook решает разработать метод определения, кто из пользователей социальной сети может быть причастен к террористической деятельности, направленной против Соединенных Штатов Америки. В математическом плане эта задача не сильно отличается от определения вероятности, что пользователю Netflix понравится фильм Ocean’s Thirteen («Тринадцать друзей Оушена»). Как правило, Facebook известны реальные имена пользователей и их место жительства, поэтому компания может использовать информацию из открытых источников для составления списка профилей, принадлежащих людям, уже имевшим судимости за террористические преступления или за поддержку террористических группировок. Далее начинается математика. Склонны ли террористы делать больше обновлений в день по сравнению с общей совокупностью пользователей этой социальной сети? или меньше? или этот показатель у них такой же, как и у всех остальных? Есть ли слова, которые чаще появляются в их обновлениях? Есть ли музыкальные группы, спортивные команды или продукты, к которым они особенно испытывают или не испытывают симпатию? Сложив все это вместе, вы можете присвоить каждому пользователю балл [146], отражающий вашу лучшую оценку вероятности , что у данного пользователя есть или будут связи с террористическими группировками. Примерно то же самое делают в Target, когда сопоставляют данные о ваших покупках для определения вероятности, беременны вы или нет.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x