Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но зачем останавливаться на этом? Если я плачу студенту колледжа за то, чтобы он сделал изображение танцующих ножниц на всех страницах моего сайта, мне нужно знать не только то, сработает ли этот прием вообще, но какие именно результаты он обеспечит. Согласуется ли воздействие, которое я обнаружил, с тем, что в долгосрочной перспективе обновление сайта повысит объем продаж всего на 5 %? При такой гипотезе вы можете обнаружить, что вероятность роста на 10 % гораздо выше, скажем 0,2. Другими словами, доказательство от маловероятного не исключает гипотезу, что обновление сайта приведет к улучшению ситуации на 5 %. Однако вы можете оптимистично задать себе вопрос, не было ли невезение причиной полученного вами результата, и на самом деле обновление сайта повысит привлекательность ваших ножниц на 25 %. Вы вычисляете еще одно р -значение и получаете 0,01 – довольно малую вероятность, которая убеждает вас отбросить эту гипотезу.

Доверительный интервал – это тот диапазон гипотез, которые доказательство от маловероятного не отбрасывают, или гипотез, которые в разумных пределах согласуются с реально наблюдаемым результатом. В данном случае доверительный интервал мог бы составлять от +3 % до +17 %. Тот факт, что 0 %, как следовало бы из нулевой гипотезы, не включается в доверительный интервал, говорит о том, что результаты статистически значимы в том смысле, о котором шла речь выше в данной главе.

Однако доверительный интервал дает гораздо больше информации. Интервал [+3 %, +17 %] позволяет быть уверенным в том, что эффект положительный, но не в том, что он большой. С другой стороны, интервал [+9 %, +11 %] позволяет с гораздо большей уверенностью предположить, что эффект не только положительный, но и довольно большой.

Доверительный интервал содержит полезную информацию и в случаях, когда вы не получаете статистически значимых результатов – другими словами, когда доверительный интервал нулевой. Если доверительный интервал равен [−0,5 %, 0,5 %], тогда тот факт, что вы не получили статистически значимых результатов, становится веским доказательством в пользу того, что вмешательство не имеет никакого эффекта. Если доверительный интервал составляет [−20 %, 20 %], причина отсутствия статистически значимых результатов состоит в том, что вы представления не имеете, оказывает ли вмешательство какое-либо воздействие и в какую сторону. С точки зрения статистической значимости эти два следствия кажутся одинаковыми, но имеют разные последствия в плане того, чего вам следует ожидать дальше.

Разработку концепции доверительного интервала обычно приписывают Ежи Нейману, еще одному выдающемуся ученому раннего периода развития статистики. Нейман был поляком, который, как и Абрахам Вальд, занимался чистой математикой в Восточной Европе, прежде чем перейти в новую по тем временам область математической статистики и переехать на Запад. В конце 1920-х годов Нейман начал сотрудничать с Эгоном Пирсоном, унаследовавшим от своего отца Карла как академическую должность в Лондоне, так и ожесточенную научную вражду с Рональдом Фишером. Фишер был трудным человеком, всегда готовым вступить в спор; его дочь говорила о нем: «Он вырос, не научившись чутко относиться к обычным человеческим качествам собратьев» {132}. В Неймане и Пирсоне он нашел оппонентов, которые оказались достаточно непреклонными, чтобы сражаться с ним десятилетиями.

Научные разногласия между этими учеными нашли свое самое яркое выражение в подходе Неймана и Пирсона к проблеме вывода [145]. Как установить истину по имеющимся данным? Их поразительный ответ состоит в том, чтобы не задавать вопросов. Для Неймана и Пирсона задача статистики – сказать нам, не во что нам верить, а что нам делать . Статистика ориентирована на принятие решений, а не на поиск ответов на вопросы. Проверка статистической значимости – не более чем правило, которое подсказывает ответственным лицам, целесообразно ли одобрять лекарственный препарат, предпринимать предложенную экономическую реформу или делать сайт более интересным.

Поначалу кажется просто диким отрицать тот факт, что цель науки состоит в поисках истины, но философия Неймана и Пирсона не так далека от рассуждений, которые мы используем в других областях. В чем состоит цель судебного разбирательства по уголовному делу? Мы могли бы наивно заявить, что это выяснение, действительно ли подсудимый совершил преступление, по поводу которого начато судебное разбирательство. Однако все далеко не так. Существуют нормы доказательного права, которые запрещают жюри присяжных заслушивать свидетельские показания, полученные с нарушением закона, даже если эти показания могли бы помочь им точно определить, виновен подсудимый или нет. Цель судебного разбирательства – не истина, а справедливость. У нас есть правила, которых необходимо придерживаться, поэтому, когда мы говорим, что подсудимый «виновен», мы имеем в виду (если внимательно относимся к словам) не то, что этот человек совершил преступление, в котором его обвиняют, а то, что он был осужден честно и справедливо в соответствии с данными правилами. Какие бы правила вы ни выбрали, в некоторых случаях вы неизбежно освободите преступников и посадите за решетку невиновных. Чем меньше вы делаете первое, тем больше вероятность того, что совершите второе. Поэтому мы пытаемся создавать правила, в случае которых общество так или иначе считает, что мы лучше всего обеспечиваем этот важнейший компромисс.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x