Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если уж на то пошло, в значении 0,05 нет ничего особенного. Это абсолютно произвольное значение, чистая условность, которую выбрал Фишер. Такое условное значение имеет свою ценность: благодаря единой пороговой величине, которую принимают все, мы знаем, о чем говорим, когда произносим слово «значимый». В свое время я прочитал статью Роберта Ректора и Кирка Джонсона о консервативной организации Heritage Foundation (фонд «Наследие»), которая жаловалась на ошибочное заявление конкурирующей группы ученых по поводу того, что обет воздержания не оказывает никакого воздействия на уровень распространенности заболеваний, передающихся половым путем, в подростковом возрасте {130}. На самом деле среди принимавших участие в исследовании юношей и девушек до 20 лет, которые дали обет воздержания до первой брачной ночи, уровень распространенности заболеваний, передающихся половым путем, действительно был немного ниже, чем среди остальных членов выборки, но это различие не было статистически значимым. Представители фонда «Наследия» были в чем-то правы: доказательства того, что обет воздержания работает, были слабыми, но они все-таки были.

В то же время Ректор и Джонсон пишут в другой работе по теме статистически незначимой связи между расой и бедностью, которую они хотели бы отбросить: «Если переменная не является статистически значимой, это означает, что у этой переменной нет статистически заметной разницы между значением коэффициента и нолем, а значит, нет и воздействия» {131}. Что хорошо для трезвой гусыни, то хорошо и для перебравшего гусака! Ценность условной границы состоит в том, что она в какой-то мере дисциплинирует исследователей, удерживая их от искушения позволить собственным предпочтениям определять, какие результаты имеют значение, а какие нет.

Однако условную границу, если придерживаться ее достаточно долго, можно ошибочно принять за то, что действительно происходит в реальном мире. Представьте, что было бы, если мы говорили бы в таком духе о состоянии экономики! У экономистов есть формальное определение рецессии, которое зависит от произвольных пороговых значений, как и в случае статистической значимости. Никто не скажет: «Меня не интересует уровень безработицы, или количество строящихся жилых домов, или совокупный объем задолженности по студенческим кредитам, или дефицит федерального бюджета; если это не рецессия, мы не станем это обсуждать». Было бы глупо так говорить. Однако критики (а их с каждым годом все больше, и их голоса становятся все громче) заявляют о том, что значительная часть научной практики – это такая же глупость.

Детектив, не судья

Очевидно, что было бы ошибкой использовать р < 0,05 в качестве синонима определения «истинный» и p > 0,05 для обозначения понятия «ложный». Доказательство от маловероятного, само по себе интуитивно привлекательное, просто не работает в качестве принципа для выведения научной истины, лежащей в основе данных.

Но какова альтернатива? Если вы когда-либо проводили эксперимент, вам известно, что научная истина не возникает из облаков, взывая к вам звуком громогласной трубы. Данные не всегда упорядочены, а логический вывод – трудный процесс.

Одна простая и распространенная стратегия сводится к тому, чтобы помимо р -значений сообщать также доверительные интервалы . Это подразумевает некоторое расширение концептуальных рамок, предлагая нам анализировать не только нулевую гипотезу, но и весь диапазон альтернатив. Предположим, у вас онлайновый магазин, который продает изготовленные кустарным способом фестонные ножницы. Будучи современным человеком (если не считать того, что вы занимаетесь изготовлением фестонных ножниц), вы устраиваете проверку «А или Б», в ходе которой половина пользователей видит текущую версию вашего веб-сайта (А), а другая половина – обновленную версию (Б) с анимационным изображением пары ножниц, которые поют и танцуют, расположившись над кнопкой «Купить сейчас». После тестирования этих двух версий сайта вы обнаруживаете, что на сайте Б объем покупок увеличивается на 10 %. Отлично! Теперь, если вы человек продвинутый, у вас может возникнуть беспокойство по поводу того, не было ли это увеличение случайной флуктуацией, поэтому вы вычисляете р -значение и приходите к выводу, что вероятность получения такого хорошего результата в случае, если переформатирование сайта действительно не работало бы (то есть если нулевая гипотеза оказалась бы верной), составляет всего 0,03 [144].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x