Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Шекспир известен как мастер аллитерации [115](составление стихотворных строк, в которых несколько следующих друг за другом слов начинаются с одной и той же буквы), например: «Full fathom five thy father lies…» («Отец твой спит на дне морском… [116]). Скиннер не считал доказательство, сделанное на основе примеров, научным. Действительно ли Шекспир использовал аллитерацию? Если да, это можно доказать с помощью математики. Скиннер писал: «Доказательства существования процесса, отвечающего за образование аллитерационных структур, можно получить только посредством статистического анализа всех вариантов расположения начальных согласных в достаточно большой выборке» {104}. Но какая разновидность статистического анализа имеется в виду? Не иначе как проверка p -значений Фишера. В данном случае нулевая гипотеза состоит в том, что Шекспир вообще не обращал внимания на начальные звуки слов, а значит, первая буква одного слова стихотворения не оказывает никакого воздействия на другие слова в той же строке. Протокол этого статистического анализа во многом напоминает протокол проведения клинических испытаний, но с одним существенным отличием: исследователь, проводящий медико-биологические испытания нового лекарственного препарата, от всей души надеется, что нулевая гипотеза будет опровергнута и он получит подтверждение эффективности своего лекарства. Для Скиннера, поставившего перед собой цель снести литературную критику с постамента, нулевая гипотеза, напротив, была весьма привлекательной идеей.

Согласно нулевой гипотезе, частота, с которой начальные звуки несколько раз встречаются в одной и той же строке, останется неизменной, если все слова сложить в мешочек, перемешать их там и выложить снова в произвольном порядке. Именно это и обнаружил Скиннер в составленной им выборке из сотни сонетов. Шекспир не прошел проверку статистической значимости. Вот что пишет по этому поводу Скиннер:

В самом стиле работы Шекспира над стихами ничто не намекало на процесс тщательного подбора согласных – несмотря на кажущееся изобилие аллитераций в его сонетах. По крайней мере, для такого предположения у нас нет веских доказательств, на которые стоило бы обратить серьезное внимание. Если рассматривать поэзию Шекспира под этим углом, мы вполне можем предположить, что аллитеративный эффект достигался случайно – то есть поэт просто вытаскивал свои слова из рукава {105}.

«Кажущееся изобилие» – какая дерзость! Эта фраза идеально передает дух той психологии, которую хотел создать Скиннер. Если Фрейд заявлял о том, что видит ранее скрытое, вытесненное в подсознание или завуалированное, Скиннер стремился сделать нечто прямо противоположное – опровергнуть то, что было на первый взгляд очевидным.

Однако Скиннер ошибался: он не доказал, что Шекспир не использовал аллитерацию. Проверка значимости – это всего лишь инструмент, подобный телескопу. А некоторые инструменты бывают более мощными по сравнению с другими. Если вы посмотрите на Марс через телескоп исследовательского уровня, то увидите его спутники; взглянув на эту планету через бинокль, вы их не различите. Но спутники там все-таки есть! Точно так же в сонетах Шекспира присутствуют аллитерации. По данным историков литературы, в те времена аллитерация была стандартным приемом, которым владели и сознательно использовали почти все авторы, писавшие свои произведения на английском языке {106}.

Однако Скиннер доказал другое: шекспировские аллитерации не создают настолько большого избытка повторяющихся звуков, чтобы его можно было бы зафиксировать в процессе проверки статистической значимости. Но разве стоило этого ожидать? Использование аллитерации в поэзии имеет как положительные, так и отрицательные стороны; в некоторых случаях аллитерацию используют для создания эффекта, тогда как в других случаях этот прием намеренно не используют, чтобы не получить нежелательного эффекта. Возможно, тенденция к увеличению общего количества стихотворных строк с аллитерацией действительно существует, но, если даже это действительно так, подобное увеличение должно быть достаточно незначительным. Используйте в своих сонетах на одну-две больше строк с аллитерацией – и станете одним из тех бескрылых сочинителей, которых высмеивал поэт елизаветинской эпохи Джордж Гаскойн:

Многие авторы грешат употреблением разнообразных слов, начинающихся с одной и той же буквы, что (при умеренном использовании) придает стихотворной строке приятное изящество; однако слишком частое повторение этой буквы превращает строку в crambe [117], а как известно, «crambe bis positum mors est» {107}.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x