Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
* * *

Почему Абрахам Вальд увидел то, чего не смогли увидеть офицеры, обладающие более профессиональными знаниями и пониманием сути воздушного боя? Причина в аналитическом складе ума Вальда – так называемом математическом мышлении. Математик всегда ставит такие вопросы: «Из каких предположений вы исходите? Обоснованы ли эти предположения?» [6] Физик Ричард Фейнман утверждал, что математики не ставят таких вопросов: «…Я всегда выигрывал. Если я угадывал – здорово. Если не угадывал, то всегда мог найти в их упрощении что-то, что они упускали из виду» ( Р. Ф. Фейнман. Вы, конечно, шутите, мистер Фейнман! / Пер. с англ. Н. А. Зубченко, О. Л. Тиходеевой, М. Шифмана. М.: НИЦ «Регулярная и хаотическая динамика», 2001. С. 39). Прим. М. Г. Порой это вызывает раздражение. Однако такой подход может быть весьма продуктивным. В случае с авиационной броней офицеры, сами того не замечая, исходили из предположения, что вернувшиеся самолеты представляют собой случайную выборку всех самолетов. Если действительно так и было бы, мы могли бы, проанализировав распределение пробоин только на уцелевших самолетах, сделать вывод об их распределении на всех машинах. Но, как только вы осознаете, что в своих расчетах опираетесь на такое предположение, вам сразу станет понятно, насколько оно ошибочно: нет никаких оснований ожидать равной вероятности выживания всех самолетов независимо от того, в какую часть машины попадает огнестрельное оружие. Мы вернемся к этой теме в главе пятнадцатой, где в более точных математических терминах выразим мысль о существовании зависимости между уровнем выживаемости самолетов в бою и местоположением пробоин.

Еще одно неоспоримое достоинство Вальда – его особая склонность к абстракции. Вулфовиц, учившийся у Вальда в Колумбийском университете, писал, что ученый отдавал предпочтение задачам «самого абстрактного рода», а также что он «всегда охотно говорил о математике, но был безразличен к ее популяризации и практическому применению» {8} 8 См.: Jacob Wolfowitz . Abraham Wald, 1902–1950 // Annals of Mathematical Statistics, 1952, Mar. 23, no. 1, p. 1–13. .

Особенности характера Вальда действительно мешали ему сосредоточиться на прикладных задачах. Ему было в тягость разбираться в деталях конструкции самолетов и оружия, поэтому он анализировал математические основы происходящего, связывая все в единое целое. Порой такой подход приводит к игнорированию действительно важных аспектов проблемы. Правда, он дает возможность увидеть общую схему, лежащую в основе различных задач, но на поверхности выглядит совсем по-другому. Это позволяет обрести весомый опыт даже в тех областях, в которых на первый взгляд у вас не может быть никаких практических знаний.

Глубинную структуру задачи с пробоинами в авиационной броне математики обозначают термином «систематическая ошибка выжившего». Такая погрешность часто возникает в самых разных ситуациях [7] Например, истории о том, что дельфины выталкивают тонущих людей на берег. На самом деле дельфины поддерживают тонущего на плаву, подталкивая в произвольных направлениях (что естественно для водных млекопитающих), но только выжившие – те, кого подтолкнули к берегу, – смогли рассказать о встрече с ними. Прим. М. Г. . Зная о существовании систематической ошибки выжившего – как знал о ней Абрахам Вальд, – вы будете готовы к тому, чтобы обнаружить ее, где бы она ни скрывалась.

Возьмем в качестве примера взаимные фонды [8] Взаимный фонд , или фонд взаимных инвестиций (mutual fund), – портфель акций, отобранных и приобретенных профессиональными финансистами на вложения большого числа мелких вкладчиков. Прим. М. Г. . Оценка их эффективности – это именно та область, в которой вам хотелось бы не допустить ни малейшей ошибки. Изменение годового темпа роста стоимости активов фонда на 1 % может составить разницу между ценным инвестиционным активом и убыточным инвестиционным инструментом. На первый взгляд может показаться, что к первому типу инвестиционных активов относятся фонды категории Large Blend (смешанные фонды акций крупных компаний) по версии агентства Моrningstar, показывающие примерно такой же рост, что и индекс S&P 500. За период с 1995 по 2004 год их рост составил 178,4 %, в среднем по целых 10,8 % в год [9] Справедливости ради следует отметить, что сам индекс S&P 500 показал еще более высокий рост – 212,5 % за тот же период. . Похоже, если в то время вы могли бы вложить деньги в те фонды, это принесло бы вам большую прибыль – не так ли?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x