Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кстати, это полезное ментальное упражнение – совсем не то, о чем писал Фрэнсис Скотт Фицджеральд в эссе 1936 года The Crack-Up («Крушение»), когда вспоминал о собственной надломленности и чувстве безысходности: «Мне приходилось уравновешивать в себе сознание безнадежности моих усилий и необходимости продолжать борьбу» [340]. Более лаконично об этом сказал Сэмюэл Беккет: «Продолжать… не в состоянии. Но должен. Так что буду продолжать» [341] {306}. Данная Фитцджеральдом характеристика «подлинного интеллекта» подразумевает, что у него самого другой интеллект. Как видел это он сам, именно натиск противоречий по сути привел к тому, что его жизнь закончилась, подобно теории множеств Фреге или компьютеру, отключившемуся под воздействием парадоксов Кирка. (Группа «Городские ласточки» в песне «Ни вашим, ни нашим» в какой-то мере подытоживает сказанное в «Крушении»: «Я лгал себе с самого начала и добился только того, что разваливаюсь на части».) Оказавшись в одиночестве и потеряв контроль над собой, с головой погрузившись в книги и самосозерцание, Фицджеральд стал одним из тех печальных молодых писателей, которые вызывали отвращение у Теодора Рузвельта.

Дэвид Фостер Уоллес также интересовался парадоксами. В свойственном ему математическом стиле он сформулировал несколько смягченную версию парадокса Рассела в своем первом романе The Broom of the System («Метла системы»). Не будет преувеличением сказать, что Уоллес писал свои романы под влиянием собственной борьбы с противоречиями. Он любил все техническое и аналитическое, но в то же время понимал, что простые религиозные заповеди и работа над собой – это более эффективное оружие против наркотиков, отчаяния и губительного солипсизма. Уоллес знал, что работа писателя должна состоять в том, чтобы проникать в головы других людей, но его основной темой стали серьезные трудности, связанные с его собственной головой. Твердо решив записать и нейтрализовать влияние собственных предубеждений и предрассудков, он осознавал, что такая решимость сама по себе относится к числу тех же предубеждений и подвержена тем же предрассудкам {307}. Безусловно, это материал курса философии, но, как известно многим студентам, изучающим математику, старые задачи, которые вы учитесь решать на первом курсе, относятся к числу самых глубоких задач, которые вы когда-либо встречали. Уоллес боролся с парадоксами точно так же, как это делают математики. Вы верите в две вещи, которые кажутся противоречащими друг другу. И вы приступаете к работе – шаг за шагом, очищая кисть, отделяя то, что вы знаете, от того, во что верите, удерживая в своем разуме две противоборствующие вещи рядом друг с другом и рассматривая каждую из них в негативном свете другой, – до тех пор пока не станет очевидной истина или то, что к ней ближе всего.

Что касается Беккета, у него было более глубокое и более благожелательное представление о двойственности, которая неизменно присутствует в его работах, принимая всевозможные эмоциональные оттенки в разных произведениях. «Продолжать… не в состоянии. Но должен. Так что буду продолжать» – это безрадостная мысль; однако Беккет обращается также к доказательству иррациональности квадратного корня из 2 Пифагора, превращая его в шутливый диалог между двумя подвыпившими героями {308}:

– Но если ты предашь меня, то тебе уготована судьба Гиппаса.

– Того самого, я полагаю, которого называли Акусматиком? – высказал предположение Вайли. – Но какое именно наказание постигло его, я не помню.

– Утоплен в глубокой луже, – объявил Нири, – за то, что разгласил теорему о несоизмеримости стороны и диагонали.

– Да сгинут все болтуны! – вскричал Вайли [342].

Не совсем ясно, насколько хорошо знал Беккет высшую математику, но в своей поздней повести Worstward Ho («Худшему навстречу») он описывает ценность неудачи в математическом творчестве более сжато и намного точнее, чем любой профессор:

Пробовал. Не сумел. Не имеет значения. Снова попробуй. Снова не сумей. Не сумей лучше [343].

И когда мне это пригодится?

Математики, с которыми мы встретились в этой книге, не просто люди, которые резко отзываются о необоснованной определенности, и не просто критики, заслуживающие уважения. Они что-то открывали и что-то создавали. Гальтон открыл регрессию к среднему значению; Кондорсе построил парадигму принятия решений в социальной сфере; Бойяи создал совершенно новую геометрию, «странный новый мир»; Шеннон и Хэмминг создали свою геометрию – пространство, в котором обитают цифровые сигналы вместо окружностей и треугольников; Вальд установил броню на самолетах в правильных местах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x