Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Аксиомы Пеано интересны тем, что на основании этих малейших отправных точек можно создать серьезные математические построения. На первый взгляд сами аксиомы касаются только целых чисел, но даже Пеано показал, что, начав с аксиом и двигаясь дальше посредством определения и логической дедукции, можно определить рациональные числа и их основные свойства [313]. После того как в XIX столетии было обнаружено, что общепринятые определения в математическом анализе и геометрии логически неполноценны, мир математики охватил кризис и смятение. Гильберт воспринимал формализм как способ начать все с чистого листа, опираясь при этом на фундаментальную, абсолютно непреложную основу.

Однако программу Гильберта преследовал призрак – призрак противоречия. Представьте себе такой кошмарный сценарий. Члены математического сообщества, работая в тесном сотрудничестве друг с другом, перестраивают весь аппарат теории чисел, геометрии и исчисления, начиная с фундаментальных аксиом, и кирпичик за кирпичиком выстраивают новые теоремы, прикрепляя каждый новый уровень к предыдущему с помощью правил дедукции. А затем однажды математик из Амстердама приводит доказательство того, что определенное математическое утверждение истинно, тогда как другой математик из Киото приводит доказательство того, что это не так.

Что теперь? Начав с утверждений, которые невозможно поставить под сомнение, мы пришли к противоречию. Следует ли из этого вывод, что аксиомы ошибочны? Или что ошибка содержится в структуре самого логического вывода? А что делать с десятилетиями работы, основанной на этих аксиомах [314]?

Таким образом, вторая проблема в списке проблем, которые Гильберт представил перед собравшимися в Париже математиками, была сформулирована так:

Однако прежде всего я хотел бы обозначить следующее как самый важный среди многочисленных вопросов, которые можно поставить в отношении аксиом: доказать, что они непротиворечивы, другими словами, – что конечное число основанных на них логических рассуждений не может привести к получению противоречивых результатов.

У кого-то возникнет искушение заявить, что подобное просто не может произойти. Разве это возможно? Ведь очевидно, что аксиомы истинны. Однако для древних греков было не менее очевидным, что геометрическая величина должна представлять собой соотношение двух целых чисел: такими были их представления о математике до тех пор, пока теорема Пифагора и упорно иррациональный квадратный корень из двух не разрушили эту систему понятий. Математике свойственна скверная привычка демонстрировать, что время от времени то, что кажется очевидно истинным, оказывается абсолютно ошибочным. Возьмем в качестве примера хотя бы Готлоба Фреге – немецкого логика, который, подобно Гильберту, не покладая рук трудился над укреплением логических основ математики. В центре внимания Фреге была не теория чисел, а теория множеств. Он также начал с последовательности аксиом, которые казались настолько очевидными, что их вряд ли нужно было формулировать. В теории множеств Фреге множество представляло собой не что иное, как совокупность объектов, называемых элементами. Для обозначения множеств, в которые входят определенные элементы, обычно используются фигурные скобки {}. Так, {1, 2, поросенок} – это множество, элементами которого являются число 1, число 2 и поросенок.

Когда некоторые элементы множества обладают определенным свойством, а другие нет, такое множество представляет собой совокупность элементов с указанным свойством. Давайте сформулируем это немного проще: существует множество поросят, и среди них есть желтые поросята, которые образуют множество желтых поросят. Здесь трудно с чем-то не согласиться. Однако эти определения носят весьма обобщенный характер. В качестве множества может выступать совокупность поросят, действительных чисел, идей, возможных вселенных или других множеств. И именно последний случай создает множество проблем. Существует ли множество множеств? Безусловно. А множество всех бесконечных множеств? Почему бы нет? На самом деле оба эти множества обладают любопытным свойством: они являются элементами самих себя . В частности, множество бесконечных множеств – это, разумеется, само по себе бесконечное множество, элементы которого содержат множества такого типа:

{целые числа}

{целые числа, а также поросенок}

{целые числа, а также Эйфелева башня}

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x