Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Величайшим сторонником формализма в математике был немецкий математик Давид Гильберт; его список двадцати трех проблем, представленный в Париже, на Международном конгрессе математиков в 1900 году, определил направление развития математики на б о льшую часть ХХ столетия. Гильберт – математик, вызывающий такое глубокое почтение, что любая работа, имеющая хотя бы косвенное отношение к его проблемам, приобретает особый блеск даже сто лет спустя. Однажды я познакомился с историком немецкой культуры из Колумбуса (штат Огайо), который рассказал мне, что именно склонность Гильберта носить сандалии с носками объясняет тот факт, что этот стиль до сих пор достаточно популярен среди математиков. Я не нашел никаких свидетельств, что это действительно так, но мне нравится так считать, поскольку это позволяет составить правильное представление о масштабе его влияния.

Значительное количество проблем Гильберта было вскоре решено; другие проблемы, например под номером восемнадцать – о максимально плотной упаковке сфер, – были решены только недавно. Некоторые проблемы до сих пор остаются нерешенными, и многие математики активно пытаются найти их решение. В частности, за решение проблемы под номером восемь (доказательство гипотезы Римана) Фонд Клэя выплатит вознаграждение в размере одного миллион долларов. Минимум в одном случае великий Гильберт ошибся. В проблеме под номером десять он предложил найти алгоритм, позволявший взять любое уравнение и определить, есть ли у него решение, при котором все переменные принимают целочисленные значения, но в 1960–1970-е годы математики Мартин Дэвис, Юрий Матиясевич, Хилари Патнэм и Джулия Робинсон опубликовали ряд работ, в которых было доказано, что такого алгоритма не существует. (Специалисты по теории чисел вздохнули с облегчением: было бы немного досадно, если оказалось бы, что некий формальный алгоритм способен автоматически решать задачи, на которые мы тратим столько лет.)

От всех остальных проблем Гильберта отличалась проблема под номером два. В ней был сформулирован не столько математический вопрос, сколько вопрос об отношении к самой математике. Свое описание этой задачи Гильберт начал с безоговорочной поддержки формалистского подхода к математике:

Занимаясь исследованием основ науки, мы должны сформировать систему аксиом, содержащую точное и исчерпывающее описание связей, существующих между элементарными понятиями этой науки. Выстроенные таким образом аксиомы являются вместе с тем определениями этих элементарных понятий; при этом ни одно утверждение в области той науки, основы которой мы изучаем, нельзя считать правильным до тех пор, пока оно не будет выведено из этих аксиом посредством конечного числа логических операций {278}.

К тому времени, когда Гильберт выступал в Париже с докладом, он уже пересмотрел аксиомы Евклида и переписал их так, чтобы исключить любые следы неопределенности; при этом он неукоснительно придерживался принципа полного вытеснения геометрической интуиции. Его версия этих аксиом действительно сохраняет свой смысл даже в случае, если заменить точки и прямые лягушками и кумкватами. Сам Гильберт говорил об этом так: «Следует добиться того, чтобы с равным успехом можно было говорить вместо точек, прямых и плоскостей о столах, стульях и пивных кружках» [311] {279}. Одним из первых приверженцев новой геометрии был молодой Абрахам Вальд, который еще во время учебы в Вене показал, что некоторые аксиомы Гильберта можно вывести из других, а значит, без них можно обойтись [312].

Гильберт не хотел ограничиваться геометрией. Он мечтал создать сугубо формальную математику, в которой заявление, что утверждение истинно, было бы равноценно заявлению, что это утверждение подчиняется изначально установленным правилам – ни больше, ни меньше. Такая математика понравилась бы Антонину Скалиа. Аксиомы, которые Гильберт планировал использовать в арифметике и которые впервые сформулировал итальянский математик Джузеппе Пеано, на первый взгляд не кажутся тем, в отношении чего могут возникать интересные вопросы или разногласия. Эти аксиомы содержат утверждения такого рода: «Ноль – это число», «Если x равно y , а y равно z , тогда х равно z » и «Если число, непосредственно следующее за числом x , тождественно числу, непосредственно следующему за числом y , тогда числа x и y тождественны». Все эти истины мы считаем самоочевидными.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x