Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Скалиа прав, высказывая беспокойство по поводу системы, в которой порывы одного поколения американцев могут ограничивать наших потомков с точки зрения конституции. Однако очевидно, что возражения Скалиа носят не просто правовой характер; его беспокоит то, что Америка теряет привычку наказания из-за вынужденного неприменения этой привычки, что Америка согласно закону не только не может казнить умственно отсталых преступников, но в силу мягкости суда еще и забыла, что хочет это делать. Скалиа, во многом подобно Сэмюелю Ливермору две сотни лет назад, с сожалением предвидит появление мира, в котором народ в значительной мере утратит свою способность применять эффективное наказание по отношению к преступникам. Я не могу разделить их обеспокоенность. Безграничная изобретательность человека в придумывании способов наказания людей соперничает с нашими способностями в области искусства, философии и науки. Наказание – это возобновляемый ресурс; нет никакой опасности, что он когда-либо будет исчерпан.

Флорида 2000 года, слизевик и как выбрать второго пилота

Слизевой гриб Physarum polycephalum (физарум многоголовый) – удивительный маленький организм. Б о льшую часть своей жизни он проводит как крошечная клетка, отдаленно напоминающая амебу. Однако при подходящих условиях тысячи таких организмов объединяются в единый коллектив под названием «плазмодий»; в этой форме слизевик имеет ярко-желтый цвет и становится настолько большим, что его можно видеть невооруженным глазом. В природе слизевик живет на разлагающихся растениях. В лабораторном существовании он очень любит овсяные хлопья.

Вас, наверное, удивляет, почему мы должны обсуждать психологию плазмодиального слизевого гриба – у нет мозга, нет вообще никакой нервной системы, не говоря уже о мыслях и чувствах. Однако слизевик, как и любое другое живое существо, умеет принимать решения, причем интересно, что они у него довольно правильные . В ограниченном мире слизевика такие решения в той или иной степени сводятся к следующему: «перемещаться к тому, что мне нравится» (овес), «удаляться от того, что мне не нравится» (яркий свет). Каким-то образом слизевик посредством децентрализованного мыслительного процесса способен эффективно справиться с такой задачей. Иными словами, слизевика можно научить проходить через лабиринт {259} [292]. (Правда, для этого понадобится много времени и много овсяных хлопьев.) Биологи рассчитывают на то, что, разобравшись с тем, как слизевик ориентируется в своем мире, они смогут открыть окно в эволюционный рассвет познания.

Даже здесь, в случае самого примитивного способа принятия решений, мы сталкиваемся с загадочным феноменом. Таня Лэтти и Мэдлин Бикман из Сиднейского университета изучали, как слизевики справляются с принятием трудных решений {260}. Выглядит это примерно так. На одной стороне чашки Петри находится три грамма овсяных хлопьев, на другой – пять грамм хлопьев, но на эти хлопья направлен ультрафиолетовый свет. Вы размещаете слизевика в центре чашки Петри. Что он будет делать?

Лэтти и Бикман обнаружили, что при таких условиях слизевик выбирает каждый из вариантов примерно в половине случаев: дополнительное количество пищи почти полностью компенсирует неприятные ощущения из-за ультрафиолетового света. Если вы были бы классическим экономистом вроде тех, с которыми Дэниел Эллсберг работал в RAND, вы сказали бы, что маленькая кучка овсяных хлопьев в темноте и кучка хлопьев побольше на свету имеют для слизевика одинаковую полезность, поэтому гриб колеблется в выборе между этими двумя вариантами.

Замените пять грамм хлопьев десятью граммами – и этот баланс нарушен: слизевик каждый раз направляется в сторону кучки хлопьев весом десять грамм, независимо от того, освещена эта кучка или нет. Эксперименты такого рода предоставляют нам информацию о приоритетах слизевика и о том, как он принимает решения, когда эти приоритеты вступают в противоречие друг с другом. Кроме того, в ходе таких экспериментов слизевой гриб ведет себя как довольно разумное существо.

Но затем произошло нечто неожиданное. Экспериментаторы попытались разместить слизевика в чашке Петри с тремя вариантами выбора: три грамма овсяных хлопьев в темноте (3-темнота), пять грамм овсяных хлопьев на свету (5-свет) и один грамм хлопьев в темноте (1-темнота). Мы можем предположить, что слизевик почти никогда не будет приближаться к кучке «1-темнота»: в кучке «3-темнота» больше хлопьев, и она находится в темноте, а значит, это явно более предпочтительный вариант. И действительно, слизевик почти никогда не выбирает вариант «1-темнота».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x