Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сравните этот подход со стратегией Селби, который выбирал числа случайным образом с помощью функции Quic Pick. В этом случае существует небольшая вероятность 0,3 % вообще потерять все призы категории «Пять угаданных чисел из шести». Более того, вероятность выиграть только один приз этой категории составляет 2 %, два приза – 6 %, три приза – 11 % и четыре приза – 15 %. Гарантированная прибыльность стратегии Деннистона уступает место риску. Безусловно, у этого риска есть свое преимущество: команда Селби может выиграть более шести таких призов с вероятностью 32 %, что невозможно в случае выбора лотерейных билетов по системе Деннистона. Билеты Селби, билеты Деннистона и любые другие билеты имеют одну и ту же ожидаемую ценность, однако метод Деннистона защищает игрока от воли случая. Чтобы играть в лотерею, ничем не рискуя, недостаточно играть сотнями тысяч билетов; необходимо играть правильными сотнями тысяч билетов.

Является ли эта стратегия причиной того, что члены группы Random Strategies тратили так много времени на заполнение сотен тысяч лотерейных билетов вручную? Использовали ли они систему Деннистона, разработанную в духе чистой математики, ради того чтобы выкачать деньги из лотереи без всякого риска для себя? Здесь мои изыскания зашли в тупик. Мне удалось связаться с Юраном Ли, но он не знал наверняка, как выбирались эти билеты; он сказал только, что у них в общежитии был человек, к которому они обращались за помощью и который занимался всеми вопросами, связанными с алгоритмом выбора чисел. Я не уверен, использовал ли этот человек систему Деннистона или что-то в этом роде. Но если нет, то думаю, ему следовало бы так поступить.

Так и быть, можете играть в лотерею

К настоящему моменту мы всеми возможными способами обосновали вывод о том, что решение играть в лотерею почти всегда является неудачным с точки зрения ожидаемого количества денег, а также что в тех редких случаях, когда ожидаемая денежная стоимость лотерейного билета превышает его цену, необходимо очень тщательно подходить к вопросу извлечения максимальной пользы из тех билетов, которые вы покупаете.

Учитывая все это, экономистам с математическим складом мышления придется объяснить один неудобный факт – тот самый, что более двух сотен лет назад озадачил Адама Смита. Лотереи очень и очень популярны. Дело в том, что лотерея – совсем не та ситуация, которую изучал Эллсберг. Когда люди сталкиваются с проблемой принятия решений при неизвестных обстоятельствах, которые невозможно установить. Крошечный шанс выиграть в лотерею выставлен на всеобщее обозрение. Закон, гласящий, что люди склонны принимать решения, которые в той или иной степени приносят им максимальную пользу, является одним из столпов экономики и действительно позволяет моделировать поведение в самых разных областях, от ведения бизнеса до выбора спутника жизни. Но это не касается лотереи. Для определенной категории экономистов такое иррациональное поведение в такой же мере неприемлемо, как для пифагорейцев была неприемлемой иррациональная длина гипотенузы. Подобное не вписывается в их модель происходящего – и все же оно имеет место быть.

Экономисты мыслят более гибко, чем пифагорейцы. Вместо того чтобы в ярости топить гонцов с плохими вестями, они адаптируют свои модели к реальности. Одну известную интерпретацию предложили наши старые друзья Милтон Фридман и Леонард Сэвидж, которые предположили, что игроки в лотерею придерживаются волнообразной кривой полезности, отображающей тот факт, что люди думают о богатстве в категориях классов, а не в количественных величинах. Если вы, будучи представителем среднего класса, тратите на лотерею пять долларов в неделю и проигрываете, такое решение обходится вам в небольшую сумму денег, но не меняет ваш социальный статус: несмотря на потерю денег, отрицательная полезность почти близка к нулю. Но, если вы выиграете, это переведет вас в другую социальную группу. Вы можете считать это моделью «смертного одра»: когда вы окажетесь при смерти, будет ли вас беспокоить мысль, что вы умираете с несколько меньшим количеством денег – и все потому, что любили играть в лотерею? По всей вероятности, нет. Будет ли для вас иметь значение тот факт, что в тридцать пять лет вы ушли на пенсию и остаток жизни провели где-то на Карибских островах, занимаясь подводным плаваньем, – и все потому, что выиграли большой приз в лотерею? Да, будет.

Еще больше отдалившись от классической теории, Даниель Канеман и Амос Тверски выдвинули предположение, что люди в основном склонны придерживаться образа действий, отличающегося от того, что предписывает кривая полезности, причем не только когда Дэниел Эллсберг ставит перед ними свою урну, но и в целом в жизни. Их работа о теории перспектив, за которую Канеман впоследствии получил Нобелевскую премию, рассматривается сейчас в качестве основополагающей в концепции бихевиористской экономики, чья задача состоит в создании максимально точной модели поведения людей: как они действуют на самом деле , а не как должны действовать согласно абстрактной концепции рациональности. Теория Канемана – Тверски гласит: люди склонны придавать маловероятным событиям большее значение по сравнению с человеком, придерживающимся аксиом Неймана – Моргенштерна. Именно поэтому притягательность джекпота превосходит уровень, который можно было бы считать приемлемым согласно строгой оценке ожидаемой полезности.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x