Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если даже искусственный интеллект будущего сможет взять на себя б о льшую часть работы, которая сегодня квалифицируется как научная деятельность, мы просто переведем эти исследования в категорию вычислений. А все, чем мы, люди с математическим складом ума, захотим заняться в освободившееся время, мы называем математикой.

Код Хэмминга довольно хорош, но наверняка найдется кто-то, рассчитывающий, что ему удастся создать код более совершенный. В конце концов, в коде Хэмминга присутствует определенная избыточность: даже во времена перфолент и механических реле компьютеры были настолько надежны, что почти все блоки из семи бит передавались без искажений. Этот код кажется слишком консервативным: мы вполне могли бы обойтись включением меньшего количества защитных битов в свои сообщения. И мы действительно можем это сделать – доказательством тому служит знаменитая теорема Шеннона. Например, если ошибки происходят с частотой одна ошибка на тысячу бит, Шеннон утверждает, что есть коды, которые сделают каждое сообщение всего на 1,2 % длиннее, чем то же сообщение без кода. Более того, делая базовые блоки все более длинными, можно найти коды, обеспечивающие заданную скорость и удовлетворяющие любым требованиям к надежности, какими бы жесткими они ни были.

Как Шеннон сконструировал свои безупречные коды? На самом деле ответ очень прост: он этого не делал. Когда мы встречаем такую сложную конструкцию, как код Хэмминга, то, разумеется, склонны думать, будто код с исправлением ошибок представляет собой некий особый код, который сначала разрабатывают, затем вносят в него изменения, после чего пишут его снова – и так до тех пор, пока каждая пара кодовых слов не окажется осторожно разделенной, но при этом любые другие два кодовых слова не будут находиться слишком близко друг к другу. Гениальность Шеннона состояла в том, что он понял всю необоснованность подобных представлений. В кодах с исправлением ошибок нет ничего особенного. Шеннон доказал – это было не сложно, как только он понял, что именно нужно доказывать, – что почти все наборы кодовых слов обладают свойством исправления ошибок. Другими словами: совершенно случайный код, не имеющий никакой структуры, с очень большой вероятностью является кодом с исправлением ошибок.

Это было поразительное открытие, если не сказать больше. Представьте себе, что вам дали задание построить аппарат на воздушной подушке. Вряд ли вы начнете с того, что в беспорядке разбросаете на земле кучу резиновых трубок и деталей двигателя, рассчитывая, что то, что получилось, полетит.

Хэмминг в 1986 году посвятил Шеннону почти восторженные слова – даже сорок лет спустя его открытие производило на математиков огромное впечатление:

Храбрость – качество, которым Шеннон владел в полной мере. Достаточно вспомнить о его главной теореме. Он хочет создать метод кодирования, но не знает, что делать, поэтому создает случайный код. Затем он заходит в тупик. А после задает невероятный вопрос: «Что сделал бы обычный случайный код?» Позже он доказывает, что обычный код вполне хорош, а значит, должен существовать как минимум один хороший код. Кто кроме человека беспредельной храбрости посмел бы размышлять о чем-то подобном? Это и есть черта великих ученых: им свойственна храбрость. Они идут вперед при невообразимых обстоятельствах; они никогда не прекращают мыслить.

Но если случайный код с большой вероятностью может быть кодом с исправлением ошибок, в чем смысл кода Хэмминга? Почему просто не выбрать кодовые слова совершенно случайным образом, опираясь на знание – согласно теореме Шеннона, – что этот код, по всей вероятности, будет исправлять ошибки? Вот одна из проблем этого плана. Недостаточно, чтобы код в принципе был способен исправлять ошибки; он должен быть применимым на практике. Если в одном из кодов Шеннона используются блоки размером 50, тогда количество кодовых слов равно количеству строк из 0–1 длиной 50 бит, что составляет 2 в степени 50, немногим более квадриллиона. Большое число. Ваш космический корабль получает сигнал, который предположительно является одним из квадриллиона кодовых слов или как минимум близок к одному из них. Но какое именно кодовое слово? Не перебирать же квадриллион кодовых слов по одному! Снова происходит комбинаторный взрыв, и в данном контексте это влечет за собой еще один компромисс. Коды со сложной структурой, такие как коды Хэмминга, в большинстве случаев легко декодировать. Однако сугубо специальные коды оказались не столь эффективными, как совершенно случайные коды, которые изучал Шеннон! За прошедшие с тех пор десятилетия, вплоть до настоящего времени, математики пытались одолеть эту границу между структурой и случайностью, кропотливо работая над созданием оптимальных кодов – достаточно случайных, чтобы быть быстрыми, и достаточно структурированных, чтобы поддаваться декодированию.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x