Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1,00000000000000000000000000000165 раз,

то есть довольно близко к решетке Лича {197} [239].

Я пойму вас и даже прощу, если вы скажете, что вам, мол, нет никакого дела до двадцатичетырехмерных сфер и того, как можно их упаковать. Но важно понимать один момент: любой математический объект, столь невероятный, как решетка Лича, приобретает весьма большое значение, и к нему д о лжно отнестись крайне серьезно. Как выяснилось, решетка Лича содержит множество симметрий поистине экзотического вида – Джон Конвей, крупный специалист в области теории групп, узнал о ней в 1968 году, за двадцать четыре часа непрерывных вычислений он выписал на огромный рулон бумаги все симметрии решетки Лича {198}. В конечном счете эти симметрии позволили сформулировать последние фрагменты теории конечных групп симметрии, занимавшей умы алгебраистов на протяжении большей части ХХ столетия [240].

Что касается старых добрых трехмерных апельсинов… Оказывается, Кеплер был прав, настаивая, что его способ упаковки самый лучший, но это не было доказано еще целых четыре столетия, пока в 1998 году теорию Кеплера не подтвердил Томас Хейлс, в то время профессор Мичиганского университета. Хейлс решил этот вопрос с помощью сложного и изящного доказательства, в котором задача была сведена к анализу всего лишь нескольких тысяч сфер, выполненному посредством большого объема компьютерных вычислений. Для математического сообщества не проблема создать сложное и изящное доказательство (мы привыкли к такого рода трудам), и эта часть работы Хейлса быстро получила превосходную оценку и подтверждение правильности; но что касается большого объема компьютерных вычислений – тут сложилась более серьезная ситуация. Доказательство возможно проанализировать до последней детали, однако с компьютерной программой все обстоит иначе. Теоретически человек в состоянии проверить каждую строку кода, но, даже если он с этим справится, может ли он полагаться на то, что код будет выполняться корректно?

Почти все математики признали доказательство ученого, но, по всей видимости, самолюбие Хейлса было сильно задето сомнением коллег по поводу того, что при доказательстве ему пришлось воспользоваться компьютерными вычислениями. После подтверждения гипотезы Кеплера он отошел от геометрии, которая сделала его знаменитым, и занялся проектом формальной верификации доказательств. Хейлс предвидит появление математики будущего, отличной от современной, и работает над ее созданием. Он считает, что математические доказательства, независимо от того, как они выполнены – с помощью ли компьютера или с помощью карандаша и бумаги, – стали настолько сложными и взаимозависимыми, что мы больше не можем быть полностью уверенными в их корректности. Классификация конечных простых групп – к настоящему времени завершившийся проект, важной частью которого стал выполненный Конвеем анализ решетки Лича, – состоит из сотен работ сотен авторов. В итоге их труд занимает около десяти тысяч страниц, и не приходится утверждать, что хотя бы один человек из ныне живущих понимает его целиком. Так как мы можем быть уверены в его правильности?

По мнению Хейлса, у нас нет иного выбора, кроме как начать все с самого начала, перестроив всю совокупность математических знаний в пределах формальной структуры, которую можно будет проверять с помощью компьютера. Коль скоро код, проверяющий формальные доказательства, сам поддается проверке (с точки зрения Хейлса, эта цель вполне достижима), мы можем навсегда избавиться от споров вокруг проблемы, с которой столкнулся в свое время Хейлс, – действительно ли доказательство является доказательством. Что будет дальше? Возможно, на следующем этапе появятся компьютеры, способные конструировать доказательства или даже генерировать идеи без какого бы то ни было вмешательства человека.

Если так и произойдет, наступит ли конец математики? Безусловно. В том случае, если машины догонят, а затем и превзойдут человека во всех областях мыслительной деятельности; если они начнут использовать нас в качестве рабов, скота или игрушек, как предсказывают некоторые самые смелые футуристы, – тогда да, математике придет конец, как, собственно, и всему остальному. Но если исключить такой вариант, то математика, должно быть, выживет. По крайней мере хочется так думать. Если на то пошло, математика уже десятки лет обращается за помощью к компьютерам. Многие вычисления, которые в прошлом мы отнесли бы к категории исследований, сейчас считаются не более творческими или достойными похвалы, чем сложение ряда десятизначных чисел. Если что-то может сделать ваш ноутбук, значит, это что-то уже не математика. Тем не менее данное обстоятельство не оставило математиков без работы. Мы смогли сохранить свои позиции при каждодневно растущем доминировании компьютерной сферы. Мы продолжаем работать на опережение, подобно киногероям, обгоняющим огненный шар.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x