Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(1/2) × (−1000) + (1/2) × (400) = −300

Отрицательная полезность данного пари означает, что данный вариант развития событий не просто хуже верных 50 тысяч долларов; он даже хуже того, если вы вообще ничего не делали бы . Равная 50 % вероятность, что вы будете разорены, означает риск, который вы не можете себе позволить, во всяком случае без перспективы получения намного большего вознаграждения.

Я показал математический способ формального описания принципа, с которым вы уже знакомы: чем более вы богаты, тем больше вы позволяете себе рисковать. Такие пари, как в представленном выше примере, подобны рискованным инвестициям с положительным ожидаемым выигрышем: когда вы часто делаете такие капиталовложения, то в некоторых случаях неизбежны какие-то денежные потери, но в долгосрочной перспективе вы остаетесь с прибылью. Чтобы покрыть нерегулярные потери, богатый человек, имеющий достаточно большой резерв, продолжает инвестировать и становится еще богаче. Небогатые люди остаются там же, где и находились.

Рискованные инвестиции могут иметь смысл даже в случае, если у вас нет денег для покрытия потерь, но только при условии, что вы предусмотрели запасной план. Определенное действие на рынке может обеспечить возможность заработать 1 миллион долларов с вероятностью 99 % и потерять 50 миллионов долларов с вероятностью 1 %. Целесообразно ли совершать этот шаг? Он имеет положительную ожидаемую ценность, поэтому кажется хорошей стратегией. Также вы можете отказаться от риска нести такие большие убытки – главным образом потому, что настолько малые вероятности, как известно, трудно оценить довольно точно [208]. Профи придумали для таких случаев меткую фразу: «Все равно что подбирать десятицентовики на пути парового катка». В большинстве случаев вы получаете не слишком много денег, но стоит поскользнуться – и каток вас раздавит.

Так что делать? Одна из стратегий сводится к тому, чтобы по полной использовать заемные средства – до тех пор пока не соберется вдоволь бумажных активов, – тогда вы делаете свой рискованный шаг, поставив на кон в сто раз больше денег. Теперь вы можете получать по 100 миллионов на каждую транзакцию – отлично! Что случится, если паровой каток вас все-таки настигнет? Вы потеряете 5 миллиардов. А может быть, и нет. Ведь сегодня, когда всё завязано друг на друге, мировая экономика представляет собой большой разваливающийся дом на дереве, который держится исключительно за счет ржавых гвоздей и веревки. Серьезное крушение в одном месте моментально создаст угрозу полного обвала нашей хибары. Однако Федеральная резервная система США решительно настроена на то, чтобы не допустить никакого краха. Как говорится, если вы потеряли миллион – это ваша проблема, а если пять миллиардов – проблема правительства.

Довольно циничная финансовая стратегия, но во многих случаях она срабатывает. В частности, она оправдала себя в 1990-е годы с хеджевым фондом Long-Term Capital Management – его истории посвящена замечательная книга Роджера Ловенстайна When Genius Failed («Когда гений терпит поражение») [209]. Кроме того, эта стратегия оправдала себя с компаниями, выжившими и даже извлекшими для себя выгоду из финансового кризиса 2008 года. Сегодня, в отсутствие кардинальных перемен, которых пока нигде не видно, подобная финансовая политика снова станет востребованной [210].

Финансовые компании все-таки не люди, а вот большинство людей, даже богатых, не любят неопределенности. Богатый инвестор может охотно заключить пари 50 на 50 с ожидаемой ценностью 50 тысяч долларов, но скорее он предпочтет сразу взять 50 тысяч долларов. Для данного явления существует специальный термин – дисперсия , или мера рассеяния возможных последствий того или иного решения, а также вероятность крайних значений. Из всей совокупности сделок, имеющих одну и ту же ожидаемую денежную стоимость, большинство людей (особенно людей, у которых нет неограниченных ликвидных активов) отдают предпочтение вариантам с более низкой дисперсией. Именно поэтому многие вкладывают деньги в муниципальные облигации, хотя акции обеспечивают более высокую рентабельность инвестиций в долгосрочной перспективе. Имея дело с облигациями, вы обязательно вернете свои деньги. Рискните инвестировать в акции с их более высокой дисперсией – вы, вероятно, добьетесь большего, но в то же время все может закончиться и гораздо хуже.

Как бы мы ни обозначали происходящее, но борьба с дисперсией представляет собой основную задачу управления деньгами. Именно из-за дисперсии пенсионные фонды диверсифицируют свои инвестиции. Если все ваши деньги вложены в акции нефтяных и газовых компаний, одно большое потрясение в энергетическом секторе может сжечь весь ваш портфель. Вам необходимо раскладывать яйца в разные корзины, во много разных корзин. Когда вы вкладываете все свои сбережения в крупный индексный фонд, распределяющий инвестиции по всем секторам экономики, вы придерживаетесь именно этого принципа. Данной стратегии посвящены некоторые работы с математическом уклоном, в которых можно найти практические советы по финансовым вопросам, например книга Бертона Малкиела A Random Walk Down Wall Street («Случайная прогулка по Уолл-стрит») [211] – стратегия унылая, но действенная. Если вас волнует порядок выхода на пенсию, то…

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x