Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И снова мы видим все тот же принцип: математика – это продолжение здравого смысла другими средствами.

Однако ожидаемая полезность не отвечает на все вопросы. В который раз досадные сложности предстают в виде головоломки. В данном случае головоломку сформулировал военный аналитик Дэниел Эллсберг, впоследствии получивший известность как разоблачитель нелицеприятных подробностей войны во Вьетнаме, передавший прессе секретные документы Пентагона. (В математических кругах, которые бывают порой довольно ограниченными в своих взглядах, нередко можно было услышать, как об Эллсберге говорят нечто в таком роде: «Знаете, прежде чем заняться политикой, он делал поистине важную работу».)

За десять лет до своей внезапной известности, в 1961 году, Эллсберг был блестящим молодым аналитиком в корпорации RAND, консультировавшим правительство США по вопросам ядерной войны: как можно ее предотвратить, а если это невозможно, то как эффективно вести. Одновременно с этим он работал над своей докторской диссертацией по экономике в Гарвардском университете. В обеих областях своей деятельности Эллсберг много размышлял о процессе принятия решений в условиях неизвестности. В то время теория ожидаемой полезности занимала важнейшее место в математическом анализе решений. В своей фундаментальной книге Theory of Games and Economic Behavior («Теория игр и экономическое поведение» [204]) Фон Нейман и Моргенштерн [205]доказали, что все люди, подчиняющиеся определенному набору правил поведения, или аксиом, должны действовать так, будто их решения ориентированы на максимизацию функции полезности. Эти аксиомы (которые впоследствии определил Леонард Джимми Сэвидж, входивший в состав Группы статистических исследований вместе с Абрахамом Вальдом) были в то время стандартной моделью поведения в условиях неопределенности.

Теория игр и теория ожидаемой полезности до сих пор играют большую роль в изучении переговоров между людьми и государствами, но никогда эта роль не была такой важной, как в RAND [206]в разгар холодной войны, где к трудам фон Неймана и Моргенштерна относились с таким же благоговением и анализировали так же тщательно, как Пятикнижие. Исследователи RAND изучали основополагающие аспекты человеческой жизни, а именно: проблему выбора и вопросы конкуренции. А в играх, которые они исследовали (таких как пари Паскаля), были очень высокие ставки.

Эллсберг, будучи молодым талантливым ученым, имел склонность выходить за рамки общепринятых ожиданий. Закончив Гарвардский университет третьим в своей группе, он поразил своих интеллектуальных собратьев тем, что записался в корпус морской пехоты, где прослужил три года в качестве рядового {184}. Будучи еще младшим научным сотрудником, в 1959 году, Эллсберг прочитал в публичной библиотеке Бостона лекцию по стратегии внешней политики, в которой, как известно, рассуждал об эффективности действий Адольфа Гитлера в качестве геополитического стратега: «Это мастер своего дела, действия которого следует изучить, с тем чтобы узнать, на что можно рассчитывать, что можно сделать в случае угрозы насилия» {185}. (Эллсберг всегда настаивал на том, что он не рекомендовал Соединенным Штатам использовать гитлеровские стратегии, а хотел только беспристрастно исследовать их эффективность. Может быть, так и было, однако трудно усомниться в том, что он пытался спровоцировать аудиторию.)

Таким образом, вряд ли стоит удивляться тому, что Эллсберг не очень охотно принимал общепринятые взгляды. Еще в период работы над дипломным проектом в университете он ставил под сомнение основные положения теории игр. А в RAND он разработал знаменитый эксперимент, получивший известность как парадокс Эллсберга {186}.

Предположим, у вас есть урна, внутри которой находится 90 шаров [207]. Вам известно, что 30 из этих шаров красные, а про остальные 60 шаров вы знаете только то, что некоторые из них черные, а некоторые желтые. Ведущий эксперимента предлагает вам следующие четыре варианта действий.

Красный. Вы получите 100 долларов, если следующий шар, который будет вынут из урны, окажется красным; в противном случае вы не получите ничего.

Черный. Вы получите 100 долларов, если следующий шар окажется черным; в противном случае вы не получите ничего.

Не красный. Вы получите 100 долларов, если следующий шар будет либо черным, либо желтым; в противном случае вы не получите ничего.

Не черный. Вы получите 100 долларов, если следующий шар будет либо красным, либо желтым; в противном случае вы не получите ничего.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x