Джордан Элленберг - Как не ошибаться. Сила математического мышления

Здесь есть возможность читать онлайн «Джордан Элленберг - Как не ошибаться. Сила математического мышления» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: Математика, foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как не ошибаться. Сила математического мышления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как не ошибаться. Сила математического мышления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.

Как не ошибаться. Сила математического мышления — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как не ошибаться. Сила математического мышления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

ожидаемое количество пересечений иглы длиной N = Np

верна для любого положительного действительного числа N , будь то большого или малого.

(Здесь не стоит приводить строгое доказательство того, что представленная выше формула применима и в случае, когда N – некое страшное иррациональное число, скажем квадратный корень из 2, потому что для этого понадобятся формальные математические выкладки. Но я даю честное слово, что основные идеи доказательства Барбье – те, что я привел.)

Теперь необходимо проанализировать задачу под новым, так сказать, углом, согнув иглу.

Это самая длинная игла из всех с которыми мы до сих пор имели дело ее общая - фото 72

Это самая длинная игла из всех, с которыми мы до сих пор имели дело: ее общая длина равна 5 единицам. Однако эта игла согнута в двух местах, а два ее края я сомкнул, чтобы образовать треугольник. Прямые сегменты иглы имеют длину 1 единица, 2 единицы и 2 единицы; следовательно, ожидаемое количество пересечений каждого сегмента равно p , 2 p и 2 p соответственно. Количество пересечений всей иглы равно сумме количества пересечений каждого сегмента. Таким образом, принцип аддитивности говорит нам, что ожидаемое количество пересечений целой иглы составляет:

p + 2 p + 2 p = 5 p .

Другими словами, формула

ожидаемое количество пересечений иглы длиной N = Np

применима и в случае согнутых игл.

Вот одна из таких игл.

Вот еще одна И еще одна Мы уже видели такие рисунки Те самые рисунки - фото 73

Вот еще одна.

И еще одна Мы уже видели такие рисунки Те самые рисунки которые две тысячи - фото 74

И еще одна.

Мы уже видели такие рисунки Те самые рисунки которые две тысячи лет назад - фото 75

Мы уже видели такие рисунки. Те самые рисунки, которые две тысячи лет назад использовали Архимед и Евдокс, когда разрабатывали метод исчерпывания. Последний рисунок похож на окружность с диаметром в одну единицу. Но на самом деле это многоугольник, состоящий из 65 536 крохотных иголок. Ваши глаза не заметят разницы, так же как не заметит ее и пол. Это означает, что ожидаемое количество пересечений окружности диаметром в одну единицу в точности такое же, что и ожидаемое количество пересечений 65536-угольника. А согласно правилу согнутой иглы, это количество равно Np , где N – это периметр многоугольника. Чему равен этот периметр? Он должен быть в точности таким же, что и длина окружности; радиус окружности равен 1/2 единицы, а значит, длина этой окружности равна π. Следовательно, ожидаемое количество пересечений окружности с краями планки равно π p .

Как вы воспринимаете такое усложнение задачи? Не кажется ли вам, что мы делаем задачу все более абстрактной и все более обобщенной, даже не ответив на основной вопрос: что такое p ?

Так вот, представьте себе: мы только что вычислили это значение.

Ведь вопрос теперь звучит так: сколько пересечений делает окружность? Совершенно неожиданно задача, казавшаяся сложной, становится простой. Симметрия, которую мы потеряли, когда перешли от круга к игле, восстановлена посредством сгибания иглы в кольцо. А это существенно упрощает задачу. Не имеет значения, куда упадет круг, – он пересекает линии на полу ровно два раза.

Таким образом ожидаемое количество пересечений равно 2 оно же равно π p - фото 76

Таким образом, ожидаемое количество пересечений равно 2; оно же равно π p . Следовательно, мы можем сделать вывод, что p = 2 / π, как и говорил Бюффон. На самом деле представленная выше аргументация применима к любой игле, какой бы многосторонней или изогнутой она ни была: ожидаемое количество пересечений равно Lp , где L – это длина иглы в единицах, равных ширине планки. Бросьте на кафельный пол груду спагетти – и я смогу точно сказать, какое число пересечений линий с макаронинами следует ожидать. Математические остряки называют этот обобщенный вариант задачей Бюффона о лапше .

Море и камень

Доказательство Барбье напоминает мне слова Пьера Делиня, специалиста по алгебраической геометрии, сказанные им о своем учителе Александре Гротендике: «Кажется, будто ничего не происходит, и все-таки в итоге получается в высшей степени нетривиальная теорема» {169}.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как не ошибаться. Сила математического мышления»

Представляем Вашему вниманию похожие книги на «Как не ошибаться. Сила математического мышления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как не ошибаться. Сила математического мышления»

Обсуждение, отзывы о книге «Как не ошибаться. Сила математического мышления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x