У людей непосвященных порой складывается впечатление, что математика сводится к применению все более и более мощных инструментов для все более глубокого погружения в неизведанное, подобно тому как строители тоннелей пробиваются сквозь скалу с помощью все более мощных взрывчатых веществ. Но это только один из возможных способов. Александр Гротендик, который в 1960–1970-х годах переделал б о льшую часть чистой математики по своему разумению, смотрел на это иначе:
Неизведанное, которое предстояло познать, казалось мне участком земли или твердого камня, сопротивляющегося вторжению… море безразлично наступает в тишине, ничего как будто не происходит, ничего не двигается, вода так далеко, что ее едва слышно… и все же в конце концов она окружает сопротивляющуюся субстанцию {170}.
Неизведанное – это камень в море, который препятствует нашему развитию. Мы можем попытаться воткнуть динамит в щели, взорвать его и повторять все это до тех пор, пока камень не развалится на части, как сделал Бюффон со своими сложными вычислениями. Или можно придерживаться более созерцательного подхода, позволяющего вашему уровню понимания постепенно и спокойно повышаться, пока через какое-то время то, что раньше казалось препятствием, не исчезнет под спокойной водой.
Математика в современном ее виде представляет собой тонкое взаимодействие между монашеским созерцанием и взрывами динамита.
Ремарка в сторону: О математиках и безумии
Барбье опубликовал свое доказательство теоремы Бюффона в 1860 году, когда ему исполнился двадцать один год и он был многообещающим студентом Высшей нормальной школы (École normale supérieure) в Париже. В 1865 году, оказавшись на грани тяжелого нервного срыва, он уехал из города, не оставив нового адреса. Ни один математик больше не встречал Барбье, пока в 1880 году старый учитель Жозеф Бертран не нашел его в одной из психиатрических лечебниц. Что касается Гротендика, в 1980-х годах он также оставил академическую математику и живет сейчас в селинджеровском уединении где-то в Пиренеях. Никто не знает, над какими математическими задачами он работает, если вообще работает. Ходят слухи, что ученый просто пасет овец [181].
Эти истории перекликаются с популярным мифом о математике: что она сводит с ума или сама является одной из разновидностей помешательства. Дэвид Фостер Уоллес, самый математически образованный из всех современных прозаиков (однажды он сделал перерыв в написании художественных произведений, чтобы написать целую книгу о теории трансфинитных множеств!), называл этот миф «математической мелодрамой» и описывал его главного героя как «человека типа Прометея и Икара, высший гений которого – это также его гордыня и пагубный порок». В таких фильмах, как A Beautiful Mind («Игры разума)», Proof («Доказательство») и Pi («Пи»), математика используется в качестве символа для обозначения одержимости и бегства от реальности. А в детективе Скотта Туроу Presumed Innocent («Презумпция невиновности») [182]сюжет построен на том, что жена главного героя, математик, оказалась психически больным убийцей. (В книге присутствует явный намек на то, что именно попытки приспособить разум женщины к математике подтолкнули убийцу к безумию.) Одну из последних версий этого мифа можно найти в романе Марка Хэддона The Curious Incident of the Dog in the Night-Time («Загадочное ночное убийство собаки») [183], в котором математический талант проявляется как одно из расстройств аутического спектра.
Уоллес отвергает эту мелодраматическую картину психической жизни математиков, и я согласен с ним. В реальной жизни математики – это обычные люди, не более безумные, чем все остальные. На самом деле мы не так часто уходим в уединение, чтобы вести одинокие битвы в суровых абстрактных мирах. Математика скорее укрепляет разум, а не напрягает его до предела. Как бы там ни было, я пришел к выводу, что в моменты сильных эмоциональных переживаний ничто не успокаивает поднимающуюся в душе боль лучше, чем математическая задача. Математика, подобно медитации, помогает установить прямой контакт со Вселенной, которая больше вас, которая была до вас и останется после вас. Я мог бы сойти с ума без математики.
«Они снова пытаются устроить перераспределение призового фонда»
Но вернемся к ситуации в Массачусетсе.
Чем больше людей играли в лотерею Cash WinFall, тем менее рентабельной она становилась. Каждый крупный покупатель, вступавший в игру, вынужден был делить выигрыши на большее количество долей. Джеральд Селби рассказал мне, что в какой-то момент Юран Лу из Random Strategies предложил, чтобы они с группой Селби по очереди играли в дни перераспределения призового фонда, что обеспечило бы каждой группе более высокую прибыль {171}. Селби перефразировал предложение Юрана так: «Ты крупный игрок, я крупный игрок; мы не можем контролировать других игроков, которые как блохи в волосах». Благодаря своему сотрудничеству Селби и Лу могли бы контролировать хотя бы друг друга. Этот план имел смысл, но Селби на него не согласился. Он и без того спокойно использовал уловку в игре, поскольку ее правила были общедоступными и любой другой игрок имел возможность ознакомиться с ними точно так же, как он. Однако сговор с другими игроками (хотя и не совсем понятно, было ли это нарушением правил проведения лотереи) слишком напоминал мошенничество. В итоге три группы игроков договорились о равном участии в каждом розыгрыше лотереи с перераспределением призового фонда. По оценкам Селби, с учетом того, что при каждом таком розыгрыше крупные игроки покупали от 1,2 до 1,4 миллиона билетов, ожидаемая ценность таких билетов была на 15 % больше их цены.
Читать дальше
Конец ознакомительного отрывка
Купить книгу