Джефферсон попросил своего друга-математика решить эту оптимизационную задачу. Во многом его вопрос напоминал другой, сформулированный самим Ньютоном в «Началах», – о форме твердого тела, оказывающего наименьшее сопротивление при движении сквозь воду. Руководствуясь этой теорией, Джефферсон создал деревянный отвал собственной конструкции и снабдил им свой плуг.
Фонд Томаса Джефферсона в Монтичелло
В 1798 году он сообщал: «Пятилетний опыт позволяет мне сказать, что на практике он соответствует тому, что обещал в теории» [281]. Так ньютоновский анализ пришел на помощь сельскому хозяйству.
От дискретных систем к непрерывным
По большей части Ньютон применял анализ к одному или двум телам – качающемуся маятнику, летящему ядру, обращающейся вокруг Солнца планете. Решение дифференциальных уравнений для трех и более тел было кошмаром, как он понял на собственном горьком опыте. Задача взаимного притяжения Солнца, Земли и Луны уже вызывала у него головную боль. Так что об изучении всей Солнечной системы не могло быть и речи; это выходило за рамки возможностей анализа Ньютона. Как он выразился в одной из неопубликованных работ, «если я не сильно ошибаюсь, одновременное рассмотрение стольких причин движения превышает силу человеческого разума» [282], [283].
Однако, как ни странно, при увеличении числа объектов до бесконечности дифференциальные уравнения снова становились полезны, если эти объекты образовывали сплошную среду, а не дискретное множество. Вспомните разницу: дискретный набор частиц подобен набору шариков, разложенных на полу. Он дискретен в том смысле, что вы можете прикоснуться к одному шарику, потом провести пальцем по пустому пространству, затем коснуться другого шарика и так далее. Между шариками есть промежутки. В непрерывной же среде, скажем, такой, как гитарная струна, все частицы держатся вместе, и вы ведете палец вдоль струны, не отрывая. Конечно, это не совсем так, поскольку струна, как и все материальные объекты, дискретна в атомном масштабе. Но уместнее рассматривать струну как непрерывный континуум. Этот подход освобождает нас от необходимости работать с триллионами и триллионами частиц.
Обращаясь к загадкам движения и изменения непрерывных сред – как вибрируют гитарные струны, создавая музыку, или как передается тепло от горячих мест к холодным, – анализ сделал следующий большой шаг к изменению мира. Однако предварительно он изменился сам. Необходимо было расширить понимание того, что такое дифференциальные уравнения и что они могут описывать.
Обыкновенные дифференциальные уравнения и уравнения в частных производных
Когда Исаак Ньютон объяснял эллиптические орбиты планет, а Кэтрин Джонсон вычисляла траекторию полета космического корабля Джона Гленна, оба использовали класс дифференциальных уравнений под названием обыкновенные дифференциальные уравнения [284]. Слово «обыкновенный» не нужно воспринимать как уничижительное. Этим термином обозначаются дифференциальные уравнения, содержащие одну независимую переменную.
Например, в уравнениях Ньютона для задачи двух тел положение планеты было функцией времени. Планета постоянно меняла свое местоположение в соответствии с соотношением F = ma . Это обыкновенное дифференциальное уравнение определяет, насколько изменится положение планеты через бесконечно малый интервал времени. В этом примере положение планеты – зависимая переменная, поскольку оно зависит от времени – независимой переменной. Точно так же время было независимой переменной в динамической модели ВИЧ Алана Перельсона. Он моделировал, как менялась концентрация вирусных частиц в крови после приема антиретровирусного препарата. Вопрос заключался в изменении во времени: насколько концентрация вируса меняется от момента к моменту. Здесь концентрация играла роль зависимой переменной, а время – независимой.
В целом обыкновенное дифференциальное уравнение описывает, как что-то (положение планеты, концентрация вируса и так далее) меняется на бесконечно малую величину в результате бесконечно малого изменения чего-то другого (например, времени). «Обыкновенным» такое уравнение считается потому, что в нем ровно одна независимая переменная.
Любопытно, что абсолютно неважно, сколько в нем зависимых переменных. Пока независимая переменная одна, уравнение считается обыкновенным. Например, для определения положения космического корабля в трехмерном пространстве нужны три числа: назовем их x, y и z . Они указывают, где (слева-справа, вверху-внизу, впереди-сзади) находится корабль относительно некоторой произвольной точки, именуемой началом координат, или точкой отсчета. Поскольку корабль движется, то x, y и z меняются в зависимости от времени. Таким образом, они являются функциями времени. Чтобы подчеркнуть это, мы могли бы записать их в виде x ( t ), y ( t ) и z ( t ).
Читать дальше
Конец ознакомительного отрывка
Купить книгу