Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы знаем, что они подчиняются законам Кеплера: мы можем даже, не изменяя ничего в природе проблемы, допустить, что все их орбиты круговые и расположены в одной и той же известной нам плоскости. Зато мы совершенно не знаем, каково было их начальное распределение. И все же мы, не колеблясь, можем утверждать, что теперь это распределение приблизительно равномерно. Почему?

Пусть b будет долготой малой планеты в начальный момент, т. е. в момент, равный нулю, пусть а – средняя скорость ее движения; ее долгота в настоящий момент t будет at + b . Сказать, что распределение планет в настоящий момент равномерно, это все равно что сказать, что средняя величина из синусов и косинусов кратного аргумента at + b есть нуль. Почему же мы утверждаем это?

Изобразим каждую малую планету точкой на плоскости, именно точкой, координаты которой в точности суть а и b . Все эти изображающие точки будут заключены в некоторой области плоскости, но так как их очень много, то эта область окажется усеянной точками. Впрочем, мы ничего не знаем о распределении этих точек.

Как приложить исчисление вероятностей в данном случае? Какова вероятность того, что одна или несколько изображающих точек находятся в такой-то части плоскости? Вследствие нашего незнания нам приходится ввести произвольную гипотезу. Чтобы выяснить природу этой гипотезы, я использую вместо математической формулы грубый, но конкретный образ.

Представим себе, что поверхность нашей плоскости покрыта воображаемой материей, плотность которой переменна, но изменяется она непрерывно. Условимся принять, что вероятное число изображающих точек, приходящихся на данную часть плоскости, пропорционально количеству находящейся здесь воображаемой материи. Поэтому, если мы имеем на плоскости две области одинаковых размеров, то вероятности того, что точка, изображающая одну из наших малых планет, находится в той или другой из этих областей, будут относиться, как средние плотности воображаемой материи в той или другой области.

Вот, следовательно, два распределения: одно – действительное, где изображающие точки крайне многочисленны, крайне скучены, но разделены, как молекулы материи по атомистической гипотезе; другое – расходящееся с действительностью, где наши изображающие точки заменены воображаемой непрерывной материей. Относительно последней мы знаем, что она не может быть реальной, но наше незнание вынуждает нас принять ее.

Если бы затем мы имели какое-нибудь представление о действительном распределении изображающих точек, то мы могли бы условиться так, чтобы во всякой области плотность этой воображаемой непрерывной материи была приблизительно пропорциональна числу изображающих точек или, если угодно, числу атомов, заключающихся в этой области. Но и этот прием невозможен, наше незнание столь велико, что мы принуждены выбирать произвольно функцию, определяющую плотность нашей воображаемой материи. Мы вынуждены принять только одну гипотезу, которой мы почти не в состоянии избежать, – мы предположим эту функцию непрерывной. Этого, как мы увидим, достаточно для того, чтобы мы могли сделать некоторое заключение.

Каково вероятное распределение малых планет в момент t ? Или, иначе, каково вероятное значение синуса долготы в момент t , т. е. sin( аt + b )? Мы начали с произвольного соглашения; если мы примем его, то это вероятное значение вполне определено. Разобьем плоскость на элементы площади. Рассмотрим значение sin( at + b ) в центре каждого из этих элементов; умножим эту величину на площадь элемента и на соответствующую плотность воображаемой материи; составим затем сумму для всех элементов плоскости. Эта сумма по определению будет искомой вероятной средней величиной, которая окажется, таким образом, выраженной при помощи двойного интеграла.

Можно сначала подумать, что эта средняя величина будет зависеть от выбора функции φ, определяющей плотность воображаемой материи, и что так как эта функция φ произвольна, то в зависимости от произвольного выбора, который мы сделаем, мы можем получить какую угодно среднюю величину. Но это совсем не так.

Простое вычисление показывает, что наш двойной интеграл очень быстро убывает с возрастанием t .

Таким образом, я совершенно не знал, какую гипотезу мне допустить относительно вероятности того или иного начального распределения; но каково бы ни было сделанное допущение, результат будет тот же: это и выводит меня из затруднения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x