Иначе обстоит дело со второй проблемой. Возьмем 10 000 первых логарифмов, которые я нахожу в таблицах. Среди этих 10 000 логарифмов я беру наудачу один; какова вероятность, что его третий десятичный знак есть четное число? Вы не затруднитесь ответить: 1/2 – и в самом деле, если вы просмотрите в таблице третьи десятичные знаки этих 10 000 чисел, вы найдете приблизительно столько же четных цифр, сколько и нечетных.
Или, если желаете, напишем 10 000 чисел, по количеству наших логарифмов; каждое из этих чисел пусть равно +1, если третий десятичный знак четный, и −1 в обратном случае. Возьмем затем среднюю величину из этих 10 000 чисел. Я не затруднюсь сказать, что эта средняя величина, вероятно, равна нулю; если бы я произвел вычисление в действительности, я убедился бы, что она очень мала.
Но эта проверка даже бесполезна. Я мог бы строго доказать, что это среднее меньше 0,003. Чтобы установить этот результат, мне пришлось бы привести довольно длинное вычисление, для которого здесь мало места, и поэтому я ограничусь ссылкой на статью, опубликованную мною в «Revue générale des Sciences» 15 апреля 1899 г. Единственный пункт, на который я должен обратить внимание, следующий: в этом вычислении я опирался только на два факта, а именно, что первая и вторая производные логарифма в рассматриваемом промежутке остаются заключенными в известных пределах.
Отсюда первое следствие: что это свойство справедливо не только для логарифма, но для какой угодно непрерывной функции, так как производные всякой непрерывной функции заключены в определенных пределах.
Если я уже заранее был уверен в результате, то это прежде всего потому, что я часто замечал аналогичные факты для других непрерывных функций; затем потому, что я – более или менее бессознательно и несовершенно – провел в уме рассуждение, которое привело меня к предыдущим неравенствам, подобно тому как опытный вычислитель, не доведя до конца умножения, соображает, что «получится приблизительно столько-то».
И кроме того, так как то, что я назвал бы моей интуицией, есть лишь несовершенный образ истинного рассуждения, то, как выяснилось, наблюдение подтвердило мои догадки, и объективная вероятность оказалась в согласии с вероятностью субъективной.
В качестве третьего примера я выберу следующую проблему: пусть число u взято наудачу, n – данное очень большое целое число; каково вероятное значение sin nu ? Эта проблема сама по себе не имеет никакого смысла. Чтоб придать ей смысл, необходимо условное допущение: мы условимся, что вероятность того, что число u заключено между а и а + da , равна φ( a ) da ; что она, следовательно, пропорциональна величине бесконечно малой разности da и равна этой величине, умноженной на функцию φ( а ), зависящую только от а . Что касается этой функции, то я выбираю ее произвольно, но надо предположить ее непрерывной. Так как значение sin nu остается тем же, когда и возрастает на 2π, то я могу, не ограничивая общности, допустить, что и заключено между 0 и 2π, и таким образом приду к допущению, что φ( а ) есть периодическая функция с периодом 2π.
Искомое вероятное значение легко выражается простым интегралом, и легко показать, что этот интеграл меньше, чем
2π (M k/ n k),
где Mk – наибольшее значение k -й производной функции φ( u ). Итак, мы видим, что если k -я производная конечна, то наша вероятная величина стремится к нулю, когда n возрастает беспредельно, и притом быстрее, чем
1/n k-1.
Итак, вероятное значение sin nu для очень большого n есть нуль; чтобы определить это значение, мне необходимо было сделать условное допущение, но результат остается тем же, каково бы ни было это условное допущение. Я наложил лишь небольшие ограничения, допуская, что функция φ( а ) есть непрерывная и периодическая, и эти гипотезы столь естественны, что неясно, как можно было бы их избежать.
Обсуждение трех предыдущих примеров, столь различных во всех отношениях, до некоторой степени обнаруживает, с одной стороны, значение того, что философы называют принципом достаточного основания, а с другой – важность того факта, что некоторые свойства являются общими для всех непрерывных функций. Изучение вероятности в физических науках приведет нас к тому же результату.
III. Вероятность в физических науках. Перейдем теперь к проблемам, относящимся к тому, что я назвал выше второй степенью незнания; это – те проблемы, в которых известен закон, но неизвестно начальное состояние системы. Я мог бы умножать число примеров, но я возьму только один; каково в настоящее время вероятное распределение малых планет на зодиаке?
Читать дальше
Конец ознакомительного отрывка
Купить книгу