Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
VI. Теория зигзагов и теория неклассов

Какую позицию занимает Рассел ввиду этих противоречий? Рассмотрев те, о которых мы только что говорили, указав еще на другие и придав им форму, которая заставляет вспомнить об Эпимениде, он без колебаний заключает:

«А propositional function of one variable does not always deter mine a class». Пропозициональная функция (т. e. определение) одной переменной не всегда определяет класс. «Пропозициональная функция», или «норма», может быть «непредикативной». И это не значит, что такие непредикативные предложения определяют пустой класс, нулевой класс; это не значит, что нет такой величины х , которая удовлетворяла бы определению и могла бы быть одним из элементов класса. Элементы существуют, но они не могут соединяться для образования класса.

Но это только начало, нужно еще быть в состоянии узнать, является ли определение предикативным или нет. Разрешая эту проблему, Рассел колеблется между тремя теориями, которые он называет:

A. теория зигзага (the zigzag theory);

B. теория ограничения размера (the theory of limitation of size);

C. теория неклассов (the no classes theory).

Согласно теории зигзагов «определения (пропозициональные функции) определяют класс, когда они очень просты, и перестают определять таковой, когда они становятся сложными и неясными». Кто же решит вопрос: можно ли рассматривать данное определение как достаточно простое, для того чтобы оно было приемлемо? На этот вопрос нет ответа, если не считать таковым форменное признание в полном бессилии: «правила, которые позволили бы распознавать, являются ли эти определения предикативными, были бы чрезвычайно сложны и рекомендовать их не было бы целесообразным ни с какой точки зрения. Это недостаток, который можно было бы исправить только при большой изобретательности или при помощи таких отличий, которые еще не намечены. Но до настоящего момента я в поисках этих правил не мог найти другого руководящего принципа, кроме отсутствия противоречия».

Эта теория остается, таким образом, довольно темной. В этой ночи – единственный проблеск, и этот проблеск есть слово «зигзаг». То, что Рассел называет «zigzagginess», является, без сомнения, тем особенным свойством, которым отличается аргумент Эпименида.

Согласно теории of limitation of size класс теряет право на существование, если он слишком обширен. Он может даже быть бесконечным, но не должен быть «чрезмерно» бесконечным.

Мы и здесь встречаемся все с тем же затруднением: в какой же именно момент класс начинает становиться слишком бесконечным? Само собой разумеется, это затруднение не разрешено, и Рассел переходит к третьей теории.

В no classes theory запрещено произносить слово «класс». Оно должно замещаться разнообразными перифразами. Какой это крупный переворот для логистиков, которые только и говорят о классах и о классах классов! Необходимо переделать всю логистику. Представляют ли себе эти авторы, какой вид примет страница логистики, если в ней будут уничтожены все предложения, в которых идет речь о классах? Кроме нескольких строк, переживших такую операцию, на белой странице ничего не останется.

Как бы то ни было, мы видим, каковы колебания Рассела, видим изменения, которым он подвергает принятые им же основные принципы. Необходимы были критерии, чтобы решить, является ли определение слишком сложным или слишком обширным, а эти критерии не могут быть оправданы иначе, как обращением к интуиции.

Рассел в конце концов склоняется к теории неклассов.

Как бы там ни было, логистика должна быть переделана, и неизвестно, что в ней может быть спасено. Бесполезно прибавлять, что на карту поставлены только канторизм и логистика. Истинные математические науки, т. е. те, которые чему-нибудь служат, могут продолжать свое развитие согласно свойственным им принципам, не заботясь о тех бурях, которые бушуют вне их; они будут шаг за шагом делать свои завоевания, которые являются окончательными и от которых им никогда не будет нужды отказываться.

VII. Правильное решение

Какой же выбор должны мы сделать между этими различными теориями? Мне кажется, что решение заключается в письме Ришара, о котором я уже говорил и которое помещено в «Revue Générale des Sciences» от 30 июня 1905 г. Изложив антиномию, которую я назвал антиномией Ришара, последний дает ей и объяснение.

Вернемся к тому, что мы сказали об этой антиномии в разделе V. Пусть Е будет совокупностью всех чисел, которые можно определить при помощи конечного числа слов, не вводя при этом понятия о самой совокупности Е . В противном случае определение Е заключало бы ложный круг: нельзя определять Е при помощи самой же совокупности Е .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x