Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Жюль Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Издательство: Литагент Алгоритм, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рассел приходит к выводу, что какое-нибудь ложное предложение заключает в себе и все прочие истинные или ложные предложения. Кутюра говорит, что этот вывод покажется на первый взгляд парадоксальным. Но кто исправлял плохую кандидатскую математическую работу, тот мог заметить, насколько правильно смотрит на дело Рассел. Кандидат часто много трудится для того, чтобы найти первое ложное уравнение; но лишь только он его получил, для него уже не представляет никакого труда сделать из него самые неожиданные выводы, из которых иные могут оказаться и точными.

II

Отсюда ясно, насколько новая логика богаче классической логики. Символы разрослись и сочетаются в разнообразные комбинации, число которых уже неограниченно. Вправе ли мы так сильно расширять смысл слова «логика». Разбирать этот вопрос и вступать с Расселом в спор о слове – занятие бесцельное. Признаем то, чего требует Рассел, но не будем удивляться, если окажется, что некоторые истины, которые мы считали несводимыми к логике в старом смысле этого слова, теперь сводятся к новой логике, которая совершенно отличается от прежней.

Мы ввели большое число новых понятий, и эти понятия не были простыми комбинациями старых. Рассел на этот счет не обманывался; не только в начале первой главы, т. е. логики предложений, но в начале второй и третьей глав, т. е. логики классов и отношений, он вводит новые слова, которые принимает как определению не подлежащие.

Но это не все, он вводит также принципы, которые признает недоказуемыми. Но эти недоказуемые принципы являются обращениями к интуиции, являются априорными синтетическими суждениями. Мы принимали их за интуитивные, когда встречали их в более или менее явной форме в математических трактатах. Но изменился ли их характер от того, что смысл слова «логика» расширился и что мы находим их теперь в книге, носящей заголовок «Трактат по логике»? Они не изменили своей природы, они изменили лишь свое место.

III

Можно ли рассматривать эти принципы как скрытые определения?

Чтобы дать положительный ответ на этот вопрос, нужно было бы быть в состоянии доказать, что они не заключают в себе противоречия. Нужно установить, что, как бы далеко мы ни проводили ряд дедукций, мы никогда не впадем в противоречие с собой.

Можно было бы попытаться рассуждать таким образом. Мы можем проверить, что операции новой логики, будучи приложены к посылкам, не заключающим противоречия, приводят только к следствиям, также свободным от противоречия. Если, следовательно, после n операций мы не пришли к противоречию, то мы не придем к противоречию после n + 1 операций. Невозможно, следовательно, наступление такого момента, когда противоречие началось бы, а это доказывает, что мы никогда не можем к нему прийти. Вправе ли мы так рассуждать? Нет, ибо это значило бы прибегнуть к полной индукции; принцип же полной индукции, будем это помнить, еще нам неизвестен.

Мы не вправе, следовательно, рассматривать эти аксиомы как скрытые определения, и нам остается только один исход: допустить для каждой из них новый акт интуиции. И такова именно, я думаю, мысль Рассела и Кутюра.

Таким образом, каждое из девяти неопределяемых понятий и каждое из двадцати недоказуемых предложений (я думаю, что если бы я считал, то насчитал бы их несколько больше), которые составляют основу новой логики, логики в широком смысле слова, предполагают акт новый, независимый от нашей интуиции, предполагают – почему этого не сказать? – настоящее синтетическое априорное суждение. В этом вопросе все, кажется, согласны. Но Рассел утверждает, что этими обращениями к интуиции дело и закончится, что в других обращениях не будет более нужды и можно будет построить всю математику, не вводя никакого нового элемента. Это мне и кажется сомнительным.

IV

Кутюра часто повторяет, что эта новая логика совершенно не зависит от идеи о числе. Я не стану подсчитывать, как часто в его изложении встречаются числительные, как количественные, так и порядковые, или неопределенные прилагательные, как, например, «несколько». Процитируем, однако, некоторые примеры:

«Логическое произведение двух или нескольких предложений есть…»

«Все предложения допускают только двоякую оценку: как истинные или как ложные».

«Относительное произведение двух отношений есть отношение».

«Отношение имеет место между двумя терминами» и т. д.

В некоторых случаях можно было бы избежать неудобства такого выражения, но иногда оно требуется существом дела. Отношение не может быть понято без двух терминов; нельзя иметь интуиции отношения, не имея в то же время интуиции двух его терминов; мало того, мы должны усмотреть, что есть два термина, ибо для того, чтобы можно было постигнуть отношение, необходимо, чтобы этих терминов было два и только два.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x